EXAMPLE 2 **Multiply radicals**

a.
$$\sqrt{6} \cdot \sqrt{6} = \sqrt{6 \cdot 6}$$
Product property of radicals $= \sqrt{36}$ Multiply. $= 6$ Simplify.b. $\sqrt{3x} \cdot 4\sqrt{x} = 4\sqrt{3x \cdot x}$ Product property of radicals $= 4\sqrt{3x^2}$ Multiply. $= 4 \cdot \sqrt{3} \cdot \sqrt{x^2}$ Product property of radicals $= 4\sqrt{3} \cdot \sqrt{x^2}$ Product property of radicals $= 4x\sqrt{3}$ Simplify.c. $\sqrt{7xy^2} \cdot 3\sqrt{x} = 3\sqrt{7xy^2 \cdot x}$ Product property of radicals $= 3\sqrt{7x^2y^2}$ Multiply. $= 3 \cdot \sqrt{7} \cdot \sqrt{x^2} \cdot \sqrt{y^2}$ Product property of radicals $= 3xy\sqrt{7}$ Simplify.

KEY CONCEPT

For Your Notebook

Quotient Property of Radicals

Words The square root of a quotient equals the quotient of the square roots of the numerator and denominator.

Words The square root of a quotient equipotent roots of the numerator and denominator
Algebra
$$\sqrt{\frac{a}{b}} = \frac{\sqrt{a}}{\sqrt{b}}$$
 where $a \ge 0$ and $b > 0$
Example $\sqrt{\frac{16}{25}} = \frac{\sqrt{16}}{\sqrt{25}} = \frac{4}{5}$

EXAMPLE 3 Use the quotient property of radicalsa.
$$\sqrt{\frac{13}{100}} = \frac{\sqrt{13}}{\sqrt{100}}$$
Quotient property of radicals $= \frac{\sqrt{13}}{10}$ Simplify.b. $\sqrt{\frac{7}{x^2}} = \frac{\sqrt{7}}{\sqrt{x^2}}$ Quotient property of radicals $= \frac{\sqrt{7}}{x^2}$ Simplify.Content property of radicals $= \frac{\sqrt{7}}{x}$ Simplify.Simplify.Content property of radicals $= \frac{\sqrt{7}}{x}$ Simplify.Content property of radicalsContent property of radicals $= \frac{\sqrt{7}}{x}$ Simplify.Content property of radicals $= \frac{\sqrt{7}}{x}$ Simplify.Content property of radicals $= \frac{\sqrt{7}}{x}$ Simplify.Content property of radicals $= \frac{\sqrt{7}}{x}$ Simplify. $= \frac{\sqrt{7}}{x}$ Simplify. $= \frac{\sqrt{7}}{x}$ Simplify. $= \frac{\sqrt{7}}{x}$ Simplify. $= \frac{\sqrt{7}}{x}$ Simplify.

WRITE RADICALS

When writing a product involving a radical, write the radical last to avoid confusion. For instance, if you write the product of *x* and $\sqrt{2}$ as $\sqrt{2}x$, it might be read ŝ as $\sqrt{2x}$.

1