11.2 Simplify Radical Expressions

Before

You found square roots.

Now

You will simplify radical expressions.

Why?

So you can find the distance to the horizon, as in Ex. 68.

Key Vocabulary

- simplest form of a radical expression
- rationalizing the denominator

A radical expression is in **simplest form** if the following conditions are true:

- No perfect square factors other than 1 are in the radicand.
- No fractions are in the radicand.
- No radicals appear in the denominator of a fraction.

You can use the following property to simplify radical expressions.

KEY CONCEPT

For Your Notebook

Product Property of Radicals

Words The square root of a product equals the product of the square roots of the factors.

Algebra
$$\sqrt{ab} = \sqrt{a} \cdot \sqrt{b}$$
 where $a \ge 0$ and $b \ge 0$

Example
$$\sqrt{4x} = \sqrt{4} \cdot \sqrt{x} = 2\sqrt{x}$$

You can also use the fact that $\sqrt{a^2} = a$, where $a \ge 0$, to simplify radical expressions. In this lesson, whenever a variable appears in the radicand assume that it has only nonnegative values.

REVIEW SQUARE ROOTS

For help finding square roots of perfect squares, see p. 110.

EXAMPLE 1 Use the product property of radicals

a.
$$\sqrt{32}=\sqrt{16\cdot 2}$$
 Factor using perfect square factor.
$$=\sqrt{16}\cdot\sqrt{2}$$
 Product property of radicals
$$=4\sqrt{2}$$
 Simplify.

b.
$$\sqrt{9x^3} = \sqrt{9 \cdot x^2 \cdot x}$$
 Factor using perfect square factors. $= \sqrt{9} \cdot \sqrt{x^2} \cdot \sqrt{x}$ Product property of radicals $= 3x\sqrt{x}$ Simplify.

Animated Algebra at classzone.com

GUIDED PRACTICE

for Example 1

1. Simplify (**a**) $\sqrt{24}$ and (**b**) $\sqrt{25x^2}$.