EXAMPLE 4 Graph a function of the form $y=\sqrt{x-h}$
Graph the function $y=\sqrt{x-4}$ and identify its domain and range. Compare the graph with the graph of $y=\sqrt{x}$.

Solution

To graph the function, make a table, then plot and connect the points. To find the domain, find the values of x for which the radicand, $x-4$, is nonnegative. The domain is $x \geq 4$.

x	4	5	6	7	8
y	0	1	1.4	1.7	2

The range is $y \geq 0$. The graph of $y=\sqrt{x-4}$ is a horizontal translation (of 4 units to the right) of the graph of $y=\sqrt{x}$.

KEY CONCEPT

For Vour Notebook

Graphs of Square Root Functions

To graph a function of the form $y=a \sqrt{x-h}+k$, you can follow these steps.

STEP 1 Sketch the graph of $y=a \sqrt{x}$. The graph of $y=a \sqrt{x}$ starts at the origin and passes through the point $(1, a)$.
STEP 2 Shift the graph $|h|$ units horizontally (to the right if h is positive and to the left if h is negative) and $|k|$ units vertically (up if k is positive and down if k is negative).

EXAMPLE 5 Graph a function of the form $y=a \sqrt{x}-\boldsymbol{h}+k$

Graph the function $y=2 \sqrt{x+4}-1$.
STEP 1 Sketch the graph of $y=2 \sqrt{x}$.
STEP 2 Shift the graph $|h|$ units horizontally and $|k|$ units vertically. Notice that

$$
y=2 \sqrt{x+4}-1=2 \sqrt{x-(-4)}+(-1)
$$

So, $h=-4$ and $k=-1$. Shift the graph left 4 units and down 1 unit.

Guided Practice for Examples 4 and 5

5. Graph the function $y=\sqrt{x+3}$ and identify its domain and range. Compare the graph with the graph of $y=\sqrt{x}$.
6. Identify the domain and range of the function in Example 5.
