EXAMPLE 4 Graph a function of the form $y = \sqrt{x - h}$

Graph the function $y = \sqrt{x-4}$ and identify its domain and range. Compare the graph with the graph of $y = \sqrt{x}$.

Solution

To graph the function, make a table, then plot and connect the points. To find the domain, find the values of *x* for which the radicand, x - 4, is nonnegative. The domain is $x \ge 4$.

x	4	5	6	7	8
у	0	1	1.4	1.7	2

The range is $y \ge 0$. The graph of $y = \sqrt{x - 4}$ is a horizontal translation (of 4 units to the right) of the graph of $y = \sqrt{x}$.

KEY CO	NCEPT	For Your Notebook
Graphs	of Square Root Functions	
To graph these ste	a function of the form $y = a\sqrt{x-h}$ ps.	+ <i>k</i> , you can follow
STEP 1	Sketch the graph of $y = a\sqrt{x}$. The g the origin and passes through the	
STEP 2	Shift the graph $ h $ units horizontal positive and to the left if <i>h</i> is negative (up if <i>k</i> is positive and down if <i>k</i> is	ive) and $ k $ units vertically

EXAMPLE 5 Graph a function of the form $y = a\sqrt{x} - h + k$

Graph the function $y = 2\sqrt{x+4} - 1$.

- *STEP 1* Sketch the graph of $y = 2\sqrt{x}$.
- *STEP 2* Shift the graph |h| units horizontally and |k| units vertically. Notice that

$$y = 2\sqrt{x+4} - 1 = 2\sqrt{x-(-4)} + (-1).$$

So, h = -4 and k = -1. Shift the graph left 4 units and down 1 unit.

GUIDED PRACTICE for Examples 4 and 5

- 5. Graph the function $y = \sqrt{x+3}$ and identify its domain and range. Compare the graph with the graph of $y = \sqrt{x}$.
- 6. Identify the domain and range of the function in Example 5.