EXAMPLE 2 Graph a function of the form $y=a \sqrt{x}$

Graph the function $y=-0.5 \sqrt{x}$ and identify its domain and range. Compare the graph with the graph of $y=\sqrt{x}$.

Solution

To graph the function, make a table, plot the points, and draw a smooth curve through the points. The domain is $x \geq 0$.

x	0	1	2	3	4
y	0	-0.5	-0.7	-0.9	-1

The range is $y \leq 0$. The graph of $y=-0.5 \sqrt{x}$ is a vertical shrink (by a factor of 0.5) with a reflection in the x-axis of the graph of $y=\sqrt{x}$.

GRAPHS OF SQUARE ROOT FUNCTIONS Examples 1 and 2 illustrate the following:

- When $|a|>1$, the graph of $y=a \sqrt{x}$ is a vertical stretch of the graph of $y=\sqrt{x}$. When $0<|a|<1$, the graph of $y=a \sqrt{x}$ is a vertical shrink of the graph of $y=\sqrt{x}$.
- When $a<0$, the graph of $y=a \sqrt{x}$ is the reflection in the x-axis of the graph of $y=|a| \sqrt{x}$.

EXAMPLE 3 Graph a function of the form $\boldsymbol{y}=\sqrt{\boldsymbol{x}}+\boldsymbol{k}$

Graph the function $y=\sqrt{x}+2$ and identify its domain and range. Compare the graph with the graph of $y=\sqrt{x}$.

Solution

To graph the function, make a table, then plot and connect the points. The domain is $x \geq 0$.

x	0	1	2	3	4
y	2	3	3.4	3.7	4

The range is $y \geq 2$. The graph of $y=\sqrt{x}+2$ is a vertical translation (of 2 units up) of the graph of $y=\sqrt{x}$.

[^0]
Guided Practice for Examples 1, 2, and 3

Graph the function and identify its domain and range. Compare the graph with the graph of $y=\sqrt{x}$.

1. $y=2 \sqrt{x}$
2. $y=-2 \sqrt{x}$
3. $y=\sqrt{x}-1$
4. $y=\sqrt{x}+3$

[^0]: AhimatedAlgebra
 at classzone.com

