1 CHAPTER REV/IEW

10.4 Use Square Roots to Solve Quadratic Equations

EXAMPLE

Solve $5(x-6)^{2}=30$. Round the solutions to the nearest hundredth.

$$
\begin{aligned}
5(x-6)^{2} & =30 & & \text { Write original equation. } \\
(x-6)^{2} & =6 & & \text { Divide each side by } 5 . \\
x-6 & = \pm \sqrt{6} & & \text { Take square roots of each side. } \\
x & =6 \pm \sqrt{6} & & \text { Add } 6 \text { to each side. }
\end{aligned}
$$

- The roots of the equation are $6+\sqrt{6} \approx 8.45$ and $6-\sqrt{6} \approx 3.55$.

CHECK To check the solutions, first rewrite the equation so that 0 is on the one side as follows: $5(x-6)^{2}-30=0$. Then graph the related function $y=5(x-6)^{2}-30$. The x-intercepts are about 8.4 and about 3.5. So, each solution checks.

EXERCISES

Solve the equation. Round your solutions to the nearest hundredth,

EXAMPLES

1-4
on p. 652-654
for Exs. 14-19 if necessary.
14. $6 x^{2}-54=0$
15. $3 x^{2}+7=4$
16. $g^{2}+11=24$
17. $7 n^{2}+5=9$
18. $2(a+7)^{2}=34$
19. $3(w-4)^{2}=5$

10.5 Solve Quadratic Equations by Completing the Square pp. 663-668

EXAMPLE

Solve $3 x^{2}+12 x=18$ by completing the square.

$$
\begin{aligned}
3 x^{2}+12 x & =18 & & \text { Write original equation. } \\
x^{2}+4 x & =6 & & \text { Divide each side by } 3 . \\
x^{2}+4 x+2^{2} & =6+2^{2} & & \text { Add }\left(\frac{4}{2}\right)^{2}, \text { or } 2^{2}, \text { to each side. } \\
(x+2)^{2} & =10 & & \text { Write left side as the square of a binomial. } \\
x+2 & = \pm \sqrt{10} & & \text { Take square roots of each side. } \\
x & =-2 \pm \sqrt{10} & & \text { Subtract } 2 \text { from each side. }
\end{aligned}
$$

- The solutions of the equation are $-2+\sqrt{10} \approx 1.16$ and $-2-\sqrt{10} \approx-5.16$.

