10.4 Use Square Roots to Solve Quadratic Equations *pp.* 652–658 **EXAMPLE** Solve $5(x-6)^2 = 30$. Round the solutions to the nearest hundredth. $5(x-6)^2 = 30$ Write original equation. $(x-6)^2 = 6$ Divide each side by 5.

 $x-6 = \pm \sqrt{6}$ Take square roots of each side.

 $x = 6 \pm \sqrt{6}$ Add 6 to each side.

The roots of the equation are $6 + \sqrt{6} \approx 8.45$ and $6 - \sqrt{6} \approx 3.55$.

CHECK To check the solutions, first rewrite the equation so that 0 is on the one side as follows: $5(x - 6)^2 - 30 = 0$. Then graph the related function $y = 5(x - 6)^2 - 30$. The *x*-intercepts are about 8.4 and about 3.5. So, each solution checks.

EXERCISES

EXAMPLES

Solve the equation. Round your solutions to the nearest hundredth, if necessary.

1-4	14. $6x^2 - 54 = 0$	15. $3x^2 + 7 = 4$	16. $g^2 + 11 = 24$
for Exs. 14–19	17. $7n^2 + 5 = 9$	18. $2(a+7)^2 = 34$	19. $3(w-4)^2 = 5$

10.5 Solve Quadratic Equations by Completing the Square pp. 663–668

EXAMPLE

Solve $3x^2 + 12x = 18$ by completing the square.

 $3x^2 + 12x = 18$ Write original equation. $x^2 + 4x = 6$ Divide each side by 3. $x^2 + 4x + 2^2 = 6 + 2^2$ Add $\left(\frac{4}{2}\right)^2$, or 2², to each side. $(x + 2)^2 = 10$ Write left side as the square of a binomial. $x + 2 = \pm \sqrt{10}$ Take square roots of each side. $x = -2 \pm \sqrt{10}$ Subtract 2 from each side.The solutions of the equation are $-2 + \sqrt{10} \approx 1.16$ and $-2 - \sqrt{10} \approx -5.16$.