all approximately equal. An exponential function models the data.

Speed of cyclist, $x(\mathrm{mi} / \mathrm{h})$	20	21	22	23	24	25
Breathing rate, y (L/min)	51.4	57.1				86.6

REVIEW EXPONENTIAL FUNCTIONS

For help with writing an equation for an exponential function, see p. 520.

CYCLING The table shows the breathing rates y (in liters of air per minute) of a cyclist traveling at different speeds x (in miles per hour). Tell whether the data can be modeled by a linear function, an exponential function, or a quadratic function. Then write an equation for the function.

Speed of cyclist, x(mi/h)	20	21	22	23	24	25
Breathing rate, $y(L / m i n)$	51.4	57.1	63.3	70.3	78.0	86.6

Solution

STEP 1 Graph the data. The graph has a slight curve. So, a linear function does not appear to model the data.

STEP 2 Decide which function models the data. In the table below, notice that $\frac{57.1}{51.4} \approx 1.11$, $\frac{63.3}{57.1} \approx 1.11, \frac{70.3}{63.3} \approx 1.11, \frac{78.0}{70.3} \approx 1.11$, and $\frac{86.6}{78.0} \approx 1.11$. So, the ratios are

Speed of cyclist (mi/h)

STEP 3 Write an equation for the exponential function. The breathing rate increases by a factor of 1.11 liters per minute, so $b=1.11$. Find the value of a by using one of the data pairs, such as $(20,51.4)$.

$$
y=a b^{x} \quad \text { Write equation for exponential function }
$$

$$
\begin{aligned}
y & =a b^{x} \\
51.4 & =a(1.11)^{20} \\
\frac{51.4}{(1.11)^{20}} & =a \\
6.38 & \approx a
\end{aligned}
$$

$$
51.4=a(1.11)^{20} \quad \text { Substitute } 1.11 \text { for } b, 20 \text { for } x \text {, and } 51.4 \text { for } y .
$$

$$
\frac{51.4}{(1.11)^{20}}=a \quad \text { Solve for } a
$$

$$
6.38 \approx a \quad \text { Use a calculator }
$$

- The equation is $y=6.38(1.11)^{x}$.

GUIDED PrACTICE for Example 4

5. In Example 4, suppose the cyclist is traveling at 15 miles per hour. Find the breathing rate of the cyclist at this speed.
