WRITING AN EQUATION When you decide that a set of ordered pairs represents a linear, an exponential, or a quadratic function, you can write an equation for the function. In this lesson, when you write an equation for a quadratic function, the equation will have the form $y=a x^{2}$.

EXAMPLE 3 Write an equation for a function

Tell whether the table of values represents a linear function, an exponential function, or a quadratic function. Then write an equation for the function.

x	-2	-1	0	1	2
y	2	0.5	0	0.5	2

Solution

STEP 1 Determine which type of function the table of values represents.

The table of values represents a quadratic function because the second differences are equal.

STEP 2 Write an equation for the quadratic function. The equation has the form $y=a x^{2}$. Find the value of a by using the coordinates of a point that lies on the graph, such as $(1,0.5)$.

$$
\begin{aligned}
y & =a x^{2} & & \text { Write equation for quadratic function. } \\
0.5 & =a(1)^{2} & & \text { Substitute } \mathbf{1} \text { for } x \text { and } 0.5 \text { for } y . \\
0.5 & =a & & \text { Solve for } a .
\end{aligned}
$$

use $(0,0)$ to find the value of a, even though $(0,0)$ lies on the graph of $y=a x^{2}$. If you do, you will obtain an undefined value for a.

CHECK Plot the ordered pairs from the table. Then graph $y=0.5 x^{2}$ to see that the graph passes through the plotted points.

Guided Practice for Example 3

Tell whether the table of values represents a linear function, an exponential function, or a quadratic function. Then write an equation for the function.
3.

x	-3	-2	-1	0	1
y	-7	-5	-3	-1	1

4.

x	-2	-1	0	1	2
y	8	2	0	2	8

