WRITING AN EQUATION When you decide that a set of ordered pairs represents a linear, an exponential, or a quadratic function, you can write an equation for the function. In this lesson, when you write an equation for a quadratic function, the equation will have the form $y = ax^2$.

EXAMPLE 3 Write an equation for a function

Tell whether the table of values represents a *linear function*, an *exponential function*, or a *quadratic function*. Then write an equation for the function.

x	-2	-1	0	1	2
y	2	0.5	0	0.5	2

Solution

STEP 1 **Determine** which type of function the table of values represents.

The table of values represents a quadratic function because the second differences are equal.

STEP 2 Write an equation for the quadratic function. The equation has the form $y = ax^2$. Find the value of *a* by using the coordinates of a point that lies on the graph, such as (1, 0.5).

$y = ax^2$	Write equation for quadratic function					
$0.5 = a(1)^2$	Substitute 1 for x and 0.5 for y.					

AVOID ERRORS

In Example 3, do not use (0, 0) to find the value of *a*, even though (0, 0) lies on the graph of $y = ax^2$. If you do, you will obtain an undefined value for *a*.

$$0.5 = a$$
 Solve for *a*.

- The equation is $y = 0.5x^2$.
 - **CHECK** Plot the ordered pairs from the table. Then graph $y = 0.5x^2$ to see that the graph passes through the plotted points.

GUIDED PRACTICE for Example 3

Tell whether the table of values represents a *linear function*, an *exponential function*, or a *quadratic function*. Then write an equation for the function.

3.	x	-3	-2	-1	0	1	4.	x	-2	-1	0	1	2
	у	-7	-5	-3	-1	1		у	8	2	0	2	8