FOUNTAINS The Centennial Fountain in Chicago shoots a water arc that can be modeled by the graph of the equation $y=-0.006 x^{2}+1.2 x+10$ where x is the horizontal distance (in feet) from the river's north shore and y is the height (in feet) above the river. Does the water arc reach a height of 50 feet? If so, about how far from the north shore is the water arc 50 feet above the water?

Solution

STEP 1 Write a quadratic equation. You want to know whether the water arc reaches a height of 50 feet, so let $y=50$. Then write the quadratic equation in standard form.

$$
\begin{aligned}
y & =-0.006 x^{2}+1.2 x+10 & & \text { Write given equation. } \\
50 & =-0.006 x^{2}+1.2 x+10 & & \text { Substitute } 50 \text { for } y . \\
0 & =-0.006 x^{2}+1.2 x-40 & & \text { Subtract } 50 \text { from each side. }
\end{aligned}
$$

STEP 2 Find the value of the discriminant of $0=-0.006 x^{2}+1.2 x-40$.

$$
\begin{aligned}
b^{2}-4 a c & =(1.2)^{2}-4(-0.006)(-40) & & a=-0.006, b=1.2, c=-40 \\
& =0.48 & & \text { Simplify. }
\end{aligned}
$$

STEP 3 Interpret the discriminant. Because the discriminant is positive, the equation has two solutions. So, the water arc reaches a height of 50 feet at two points on the water arc.

STEP 4 Solve the equation $0=-0.006 x^{2}+1.2 x-40$ to find the distance from the north shore where the water arc is 50 feet above the water.

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} & & \text { Quadratic formula } \\
& =\frac{-1.2 \pm \sqrt{0.48}}{2(-0.006)} & & \text { Substitute values in the quadratic formula. } \\
x & \approx 42 \text { or } x \approx 158 & & \text { Use a calculator. }
\end{aligned}
$$

- The water arc is 50 feet above the water about 42 feet from the north shore and about 158 feet from the north shore.

GUIDED PRACTICE for Example 4

7. WHAT IF? In Example 4, does the water arc reach a height of 70 feet? If so, about how far from the north shore is the water arc 70 feet above the water?
