Discriminant

a.6, A.10.A, A.10.B; 2A.8.B

> You used the quadratic formula. You will use the value of the discriminant. So you can solve a problem about gymnastics, as in Ex. 49.

Key Vocabulary • discriminant In the quadratic formula, the expression $b^2 - 4ac$ is called the **discriminant** of the associated equation $ax^2 + bx + c = 0$.

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \checkmark \text{discriminant}$$

Because the discriminant is under the radical symbol, the value of the discriminant can be used to determine the number of solutions of a quadratic equation and the number of *x*-intercepts of the graph of the related function.

KEY CONCEPT		For Your Notebook		
Using the Discriminant of $ax^2 + bx + c = 0$				
Value of the discriminant	$b^2 - 4ac > 0$	$b^2-4ac=0$	$b^2 - 4ac < 0$	
Number of solutions	Two solutions	One solution	No solution	
Graph of $y = ax^2 + bx + c$				
2 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Two <i>x</i> -intercepts	One <i>x</i> -intercept	No <i>x</i> -intercept	

READING

Recall that in this course, *solutions* refers to real-number solutions.

EXAMPLE 1 Use the discriminant

Equation $ax^2 + bx + c = 0$	Discriminant b ² – 4 <i>ac</i>	Number of solutions
a. $2x^2 + 6x + 5 = 0$	$6^2 - 4(2)(5) = -4$	No solution
b. $x^2 - 7 = 0$	$0^2 - 4(1)(-7) = 28$	Two solutions
c. $4x^2 - 12x + 9 = 0$	$(-12)^2 - 4(4)(9) = 0$	One solution