10.7 Interpret the Discriminant
 a.6, A.10.A,
 A.10.B; 2A.8.B

Before You used the quadratic formula.
Now
Why? You will use the value of the discriminant.
So you can solve a problem about gymnastics, as in Ex. 49.

Key Vocabulary

- discriminant

In the quadratic formula, the expression $b^{2}-4 a c$ is called the discriminant of the associated equation $a x^{2}+b x+c=0$.

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \longleftarrow \text { discriminant }
$$

Because the discriminant is under the radical symbol, the value of the discriminant can be used to determine the number of solutions of a quadratic equation and the number of x-intercepts of the graph of the related function.

KEY CONCEPT

For Your Notebook
Using the Discriminant of $a x^{2}+b x+c=0$

Value of the discriminant	$b^{2}-4 a c>0$	$b^{2}-4 a c=0$	$b^{2}-4 a c<0$
Number of solutions	Two solutions	One solution	No solution
$\mathbf{G r a p h}$ of $\boldsymbol{y}=\boldsymbol{a \boldsymbol { x } ^ { 2 }}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c}$			
Two x-intercepts			

EXAMPLE 1 Use the discriminant

Equation
$a x^{2}+b x+c=0$
a. $2 x^{2}+6 x+5=0$
b. $x^{2}-7=0$
c. $4 x^{2}-12 x+9=0$

Discriminant

$b^{2}-4 a c$
$6^{2}-4(2)(5)=-4$
$0^{2}-4(1)(-7)=28$
$(-12)^{2}-4(4)(9)=0$

Number of solutions

No solution
Two solutions
One solution

