EXAMPLE 2 Solve a quadratic equation

GUIDED PRACTICE for Examples 1 and 2

Use the quadratic formula to solve the equation. Round your solutions to the nearest hundredth, if necessary.

1. $x^2 - 8x + 16 = 0$ **2.** $3n^2 - 5n = -1$ **3.** $4z^2 = 7z + 2$

EXAMPLE 3 Use the quadratic formula

FILM PRODUCTION For the period 1971–2001, the number *y* of films produced in the world can be modeled by the function $y = 10x^2 - 94x + 3900$ where *x* is the number of years since 1971. In what year were 4200 films produced?

Solution

$$y = 10x^{2} - 94x + 3900$$
Write function.

$$4200 = 10x^{2} - 94x + 3900$$
Substitute 4200 for y.

$$0 = 10x^{2} - 94x - 300$$
Write in standard form.

$$x = \frac{-(-94) \pm \sqrt{(-94)^{2} - 4(10)(-300)}}{2(10)}$$
Substitute values in the quadratic formula: $a = 10, b = -94$, and $c = -300$.

$$= \frac{94 \pm \sqrt{20,836}}{20}$$
Simplify.
The solutions of the equation are $\frac{94 + \sqrt{20,836}}{20} \approx 12$ and $\frac{94 - \sqrt{20,836}}{20} \approx -3$.

INTERPRET SOLUTIONS

The solution -3 can be ignored because -3 represents the year 1968, which is not in the given time period.

There were 4200 films produced about 12 years after 1971, or in 1983.