Extension
 Use artier Lesson 10.5

Key Vocabulary - vertex form

Graph Quadratic Functions in Vertex Form

Goal Graph quadratic functions in vertex form.
In Lesson 10.2, you graphed quadratic functions in standard form. Quadratic functions can also be written in vertex form, $y=a(x-h)^{2}+k$ where $a \neq 0$. In this form, the vertex of the graph can be easily determined.

KEY CONCEPT

For Your Notebook
Graph of Vertex Form $\boldsymbol{y}=\boldsymbol{a}(\mathbf{x}-\boldsymbol{h})^{\mathbf{2}}+\boldsymbol{k}$
The graph of $y=a(x-h)^{2}+k$ is the graph of $y=a x^{2}$ translated h units horizontally and k units vertically.

Characteristics of the graph of $y=a(x-h)^{2}+k:$

- The vertex is (h, k).
- The axis of symmetry is $x=h$.
- The graph opens up if $a>0$, and the graph opens down if $a<0$.

EXAMPLE 1 Graph a quadratic function in vertex form

Graph $y=-(x+2)^{2}+3$.

Solution

STEP 1 Identify the values of a, h, and $k: a=-1, h=-2$, and $k=3$. Because $a<0$, the parabola opens down.
STEP 2 Draw the axis of symmetry, $x=-2$.
STEP 3 Plot the vertex $(h, k)=(-2,3)$.
STEP 4 Plot four points. Evaluate the function for two x-values less than the x-coordinate of the vertex.
$\boldsymbol{x}=-3: y=-(-3+2)^{2}+3=2$
$x=-5: y=-(-5+2)^{2}+3=-6$
Plot the points $(-3,2)$ and $(-5,-6)$ and their reflections, $(-1,2)$ and $(1,-6)$, in the axis of symmetry.

STEP 5 Draw a parabola through the plotted points.

