SOLVING EQUATIONS The method of completing the square can be used to solve any quadratic equation. To use completing the square to solve a quadratic equation, you must write the equation in the form $x^{2}+b x=d$.

EXAMPLE 2 Solve a quadratic equation

AVOID ERRORS

When completing the square to solve an equation, be sure you add the term $\left(\frac{b}{2}\right)^{2}$ to both sides of the equation.

AVOID ERRORS

Be sure that the coefficient of x^{2} is 1 before you complete the square.

Solve $x^{2}-16 x=-15$ by completing the square.

Solution

$$
\begin{aligned}
x^{2}-16 x & =-15 & & \text { Write original equation. } \\
x^{2}-16 x+(-8)^{2} & =-15+(-8)^{2} & & \text { Add }\left(\frac{-16}{2}\right)^{2}, \text { or }(-8)^{2}, \text { to each side. } \\
(x-8)^{2} & =-15+(-8)^{2} & & \begin{array}{l}
\text { Write left side as the square of } \\
\text { a binomial. }
\end{array} \\
(x-8)^{2} & =49 & & \text { Simplify the right side. } \\
x-8 & = \pm 7 & & \text { Take square roots of each side. } \\
x & =8 \pm 7 & & \text { Add 8 to each side. }
\end{aligned}
$$

The solutions of the equation are $8+7=15$ and $8-7=1$.
CHECK You can check the solutions in the original equation.

$$
\begin{array}{l|l}
\text { If } \boldsymbol{x}=\mathbf{1 5 :} \\
(15)^{2}-16(15) \stackrel{?}{=}-15 & \text { If } \boldsymbol{x}=\mathbf{1 :} \\
-15=-15 \checkmark & (1)^{2}-16(1) \stackrel{?}{=}-15 \\
(15=-15
\end{array}
$$

EXAMPLE 3 Solve a quadratic equation in standard form

Solve $2 x^{2}+20 x-8=0$ by completing the square.

Solution

$$
\begin{array}{rlrl}
2 x^{2}+20 x-8 & =0 & & \text { Write original equation. } \\
2 x^{2}+20 x & =8 & & \text { Add 8 to each side. } \\
x^{2}+10 x & =4 & & \text { Divide each side by } 2 . \\
x^{2}+10 x+5^{2} & =4+5^{2} & & \text { Add }\left(\frac{\mathbf{1 0}}{\mathbf{2}}\right)^{2}, \text { or } 5^{2}, \text { to each side. } \\
(x+5)^{2} & =29 & & \text { Write left side as the square of a binomial. } \\
x+5 & = \pm \sqrt{29} & & \text { Take square roots of each side. } \\
x & =-5 \pm \sqrt{29} & & \text { Subtract } 5 \text { from each side. } \\
& \text { The solutions are }-5+\sqrt{29} \approx 0.39 \text { and }-5-\sqrt{29} \approx-10.39 .
\end{array}
$$

Guided Practice for Examples 2 and 3

Solve the equation by completing the square. Round your solutions to the nearest hundredth, if necessary.
4. $x^{2}-2 x=3$
5. $m^{2}+10 m=-8$
6. $3 g^{2}-24 g+27=0$

