5 Solve Quadratic Equations by Completing the Square

You solved quadratic equations by finding square roots.

Now

You will solve quadratic equations by completing the square.

Why?

So you can solve a problem about snowboarding, as in Ex. 50.

Key Vocabulary

- completing the square
- perfect square trinomial, p. 601

For an expression of the form $x^2 + bx$, you can add a constant c to the expression so that the expression $x^2 + bx + c$ is a perfect square trinomial. This process is called **completing the square**.

KEY CONCEPT

For Your Notebook

Completing the Square

Words To complete the square for the expression $x^2 + bx$, add the square of half the coefficient of the term bx.

Algebra
$$x^2 + bx + \left(\frac{b}{2}\right)^2 = \left(x + \frac{b}{2}\right)^2$$

EXAMPLE 1

Complete the square

Find the value of c that makes the expression $x^2 + 5x + c$ a perfect square trinomial. Then write the expression as the square of a binomial.

STEP 1 Find the value of c. For the expression to be a perfect square trinomial, c needs to be the square of half the coefficient of bx.

$$c = \left(\frac{5}{2}\right)^2 = \frac{25}{4}$$
 Find the square of half the coefficient of *bx*.

STEP 2 Write the expression as a perfect square trinomial. Then write the expression as the square of a binomial.

$$x^2 + 5x + \mathbf{c} = x^2 + 5x + \frac{25}{4}$$
 Substitute $\frac{25}{4}$ for c.
$$= \left(x + \frac{5}{2}\right)^2$$
 Square of a binomial

GUIDED PRACTICE

for Example 1

Find the value of c that makes the expression a perfect square trinomial. Then write the expression as the square of a binomial.

1.
$$x^2 + 8x + a$$

1.
$$x^2 + 8x + c$$
 2. $x^2 - 12x + c$ **3.** $x^2 + 3x + c$

3.
$$x^2 + 3x + a$$