10.5 Completing the Square Using Algebra Tiles

MATERIALS•algebra tiles

QUESTION How can you use algebra tiles to complete the square?

For an expression of the form $x^{2}+b x$, you can add a constant c to the expression so that the expression $x^{2}+b x+c$ is a perfect square trinomial. This process is called completing the square.

EXPLORE Complete the square

Find the value of c that makes $x^{2}+4 x+c$ a perfect square trinomial.

STEP 1 Model expression

Use algebra tiles to model the expression $x^{2}+4 x$. You will need one x^{2}-tile and four x-tiles for this expression.

STEP 2 Rearrange tiles

Arrange the tiles to form a square. The arrangement will be incomplete in one of the corners.

STEP 3 Complete the square

Determine the number of 1-tiles needed to complete the square. The number of 1-tiles is the value of c. So, the perfect square trinomial is $x^{2}+4 x+4$ or $(x+2)^{2}$.

DRAW CONCLUSIONS Use your observations to complete these exercises

1. Copy and complete the table using algebra tiles.

Expression	Number of 1-tiles needed to complete the square	Expression written as a square
$x^{2}+4 x$	4	$x^{2}+4 x+4=(x+2)^{2}$
$x^{2}+6 x$	$?$	$?$
$x^{2}+8 x$	$?$	$?$
$x^{2}+10 x$	$?$	$?$

2. In the statement $x^{2}+b x+c=(x+d)^{2}$, how are b and d related? How are c and d related?
3. Use your answer to Exercise 2 to predict the number of 1-tiles you would need to add to complete the square for the expression $x^{2}+18 x$.
