PROBLEM SOLVING WORKSHOP LESSON 10.4

a.6, A.10.A;

 2A.6.B, 2A.8.D
Problem

USE AN

APPROXIMATION
By replacing 28 with
25 , you will obtain an answer that is an approximation of the amount of time that the ball is in the air.

METHOD 1

Usigg AlIERNATIVEMEHHODS

Another Way to Solve Example 5, page 654

MULTIPLE REPRESENTATIONS In Example 5 on page 654, you saw how to solve a problem about a dropped table-tennis ball by using a square root. You can also solve the problem by using factoring or by using a table.

SPORTS EVENT During an ice hockey game, a remote-controlled blimp flies above the crowd and drops a numbered table-tennis ball. The number on the ball corresponds to a prize. Use the information in the diagram to find the amount of time that the ball is in the air.

Using Factoring One alternative approach is to use factoring.
STEP 1 Write an equation for the height h (in feet) of the ball as a function of time t (in seconds) after it is dropped using the vertical motion model.
$h=-16 t^{2}+v t+s \quad$ Vertical motion model
$h=-16 t^{2}+0 t+45 \quad$ Substitute $\mathbf{0}$ for v and 45 for s.
STEP 2 Substitute 17 for h to find the time it takes the ball to reach a height of 17 feet. Then write the equation so that 0 is on one side.

$$
\begin{aligned}
17 & =-16 t^{2}+45 & & \text { Substitute } 17 \text { for } h . \\
0 & =-16 t^{2}+28 & & \text { Subtract } 17 \text { from each side. }
\end{aligned}
$$

STEP 3 Solve the equation by factoring. Replace 28 with the closest perfect square, 25 , so that the right side of the equation is factorable as a difference of two squares.

$$
\begin{aligned}
0 & =-16 t^{2}+25 & & \text { Use } \mathbf{2 5} \text { as an approximation for } 28 . \\
0 & =-\left(16 t^{2}-25\right) & & \text { Factor out }-1 . \\
0 & =-(4 t-5)(4 t+5) & & \text { Difference of two squares pattern } \\
4 t-5 & =0 \text { or } 4 t+5=0 & & \text { Zero-product property } \\
t & =\frac{5}{4} \text { or } t=-\frac{5}{4} & & \text { Solve for } t .
\end{aligned}
$$

- The ball is in the air about $\frac{5}{4}$, or 1.25 , seconds.

