Problem Solving

: EXAMPLE 5
on p. 654
for Exs. 56-57
56. FALLING OBJECT Fenway Park is a Major League Baseball park in Boston, Massachusetts. The park offers seats on top of the left field wall. A person sitting in one of these seats accidentally drops his sunglasses on the field. The height h (in feet) of the sunglasses can be modeled by the function $h=-16 t^{2}+38$ where t is the time (in seconds) since the sunglasses were dropped. Find the time it takes for the sunglasses to reach the field. Round your answer to the nearest hundredth of a second.
TEXAS @HomeTutor for problem solving help at classzone.com
57. TAKS REASONING Which equation can be used to find the time it takes for an object to hit the ground after it was dropped from a height of 68 feet?
(A) $-16 t^{2}=0$
(B) $-16 t^{2}-68=0$
(C) $-16 t^{2}+68=0$
(D) $-16 t^{2}=68$

TEXAS @HomeTutor for problem solving help at classzone.com
58. INTERNET USAGE For the period 1995-2001, the number y (in thousands) of Internet users worldwide can be modeled by the function $y=12,697 x^{2}+55,722$ where x is the number of years since 1995. Between which two years did the number of Internet users worldwide reach $100,000,000$?
59. GEMOLOGY To find the weight w (in carats) of round faceted gems, gemologists use the formula $w=0.0018 D^{2} d s$ where D is the diameter (in millimeters) of the gem, d is the depth (in millimeters) of the gem, and s is the specific gravity of the gem. Find the diameter to the nearest tenth of a millimeter of each round faceted gem in the table.

	Gem	Weight (carats)	Depth $(\mathbf{m m})$	Specific gravity	Diameter $(\mathbf{m m})$
a.	Amethyst	1	4.5	2.65	?
	b.	Diamond	1	4.5	3.52
c.	Ruby	1	4.5	4.00	?

60. TAKS REASONING In deep water, the speed s (in meters per second) of a series of waves and the wavelength L (in meters) of the waves are related by the equation $2 \pi s^{2}=9.8 L$.

a. Find the speed to the nearest hundredth of a meter per second of a series of waves with the following wavelengths: 6 meters, 10 meters, and 25 meters. (Use 3.14 for π.)
b. Does the speed of a series of waves increase or decrease as the wavelength of the waves increases? Explain.
