EXAMPLE 4 Solve a quadratic equation

Solve $6(x-4)^{2}=42$. Round the solutions to the nearest hundredth.

$$
\begin{aligned}
6(x-4)^{2} & =42 & & \text { Write original equation. } \\
(x-4)^{2} & =7 & & \text { Divide each side by } 6 . \\
x-4 & = \pm \sqrt{7} & & \text { Take square roots of each side. } \\
x & =4 \pm \sqrt{7} & & \text { Add } 4 \text { to each side. }
\end{aligned}
$$

- The solutions are $4+\sqrt{7} \approx 6.65$ and $4-\sqrt{7} \approx 1.35$.

CHECK To check the solutions, first write the equation so that 0 is on one side as follows: $6(x-4)^{2}-42=0$. Then graph the related function $y=6(x-4)^{2}-42$. The x-intercepts appear to be about 6.6 and about 1.3. So, each solution checks.

EXAMPLE 5 TAKS REASONING: Multi-Step Problem

ANOTHER WAY

For alternative methods for solving the problem in Example 5, turn to page 659 for the Problem Solving Workshop.

SPORTS EVENT During an ice hockey game, a remote-controlled blimp flies above the crowd and drops a numbered table-tennis ball. The number on the ball corresponds to a prize. Use the information in the diagram to find the amount of time that the ball is in the air.

Solution

STEP 1 Use the vertical motion model to write an equation for the height h (in feet) of the ball as a function of time t (in seconds).
$h=-16 t^{2}+v t+s$
$h=-16 t^{2}+0 t+45$
Vertical motion model
Substitute for v and s.

STEP 2 Find the amount of time the ball is in the air by substituting 17 for h and solving for t.

$$
\begin{aligned}
h & =-16 t^{2}+45 & & \text { Write model. } \\
17 & =-16 t^{2}+45 & & \text { Substitute } 17 \text { for } h . \\
-28 & =-16 t^{2} & & \text { Subtract } 45 \text { from each side. } \\
\frac{28}{16} & =t^{2} & & \text { Divide each side by }-16 . \\
\sqrt{\frac{28}{16}} & =t & & \text { Take positive square root. } \\
1.32 & \approx t & & \text { Use a calculator. }
\end{aligned}
$$

The ball is in the air for about 1.32 seconds.

