SIMPLIFYING SQUARE ROOTS In cases where you need to take the square root of a fraction whose numerator and denominator are perfect squares, the radical can be written as a fraction. For example, $\sqrt{\frac{16}{25}}$ can be written as $\frac{4}{5}$ because $\left(\frac{4}{5}\right)^{2}=\frac{16}{25}$.

EXAMPLE 2 Take square roots of a fraction

Solve $4 z^{2}=9$.

Solution

$$
\begin{aligned}
4 z^{2} & =9 & & \text { Write original equation. } \\
z^{2} & =\frac{9}{4} & & \text { Divide each side by } 4 . \\
z & = \pm \sqrt{\frac{9}{4}} & & \text { Take square roots of each side. } \\
z & = \pm \frac{3}{2} & & \text { Simplify. }
\end{aligned}
$$

- The solutions are $-\frac{3}{2}$ and $\frac{3}{2}$.

Abstract

APPROXIMATING SQUARE ROOTS In cases where d in the equation $x^{2}=d$ is not a perfect square or a fraction whose numerator and denominator are not perfect squares, you need to approximate the square root. A calculator can be used to find an approximation.

EXAMPLE 3 Approximate solutions of a quadratic equation

Solve $3 x^{2}-11=7$. Round the solutions to the nearest hundredth.

Solution

$$
\begin{aligned}
3 x^{2}-11 & =7 & & \text { Write original equation. } \\
3 x^{2} & =18 & & \text { Add 11 to each side. } \\
x^{2} & =6 & & \text { Divide each side by } 3 . \\
x & = \pm \sqrt{6} & & \text { Take square roots of each side. } \\
x & \approx \pm 2.45 & & \text { Use a calculator. Round to the nearest hundredth. }
\end{aligned}
$$

- The solutions are about -2.45 and about 2.45.

Guided Practice for Examples 1, 2, and 3

Solve the equation.

1. $c^{2}-25=0$
2. $5 w^{2}+12=-8$
3. $2 x^{2}+11=11$
4. $25 x^{2}=16$
5. $9 m^{2}=100$
6. $49 b^{2}+64=0$

Solve the equation. Round the solutions to the nearest hundredth.
7. $x^{2}+4=14$
8. $3 k^{2}-1=0$
9. $2 p^{2}-7=2$

