10.4
 A.10.A, A.10.B; 2A.6.B, 2A.8.D

Before
Now
Why?

You solved a quadratic equation by graphing. You will solve a quadratic equation by finding square roots.
So you can solve a problem about a falling object, as in Example 5.

Key Vocabulary - square root, p. 110

- perfect square, p. 111

READING
Recall that in this course, solutions refers to real-number solutions.

To use square roots to solve a quadratic equation of the form $a x^{2}+c=0$, first isolate x^{2} on one side to obtain $x^{2}=d$. Then use the following information about the solutions of $x^{2}=d$ to solve the equation.

KEY CONCEPT

For Your Notebook

Solving $x^{2}=\boldsymbol{d}$ by Taking Square Roots

- If $d>0$, then $x^{2}=d$ has two solutions: $x= \pm \sqrt{d}$.
- If $d=0$, then $x^{2}=d$ has one solution: $x=0$.
- If $d<0$, then $x^{2}=d$ has no solution.

EXAMPLE 1 Solve quadratic equations

Solve the equation.
a. $2 x^{2}=8$
b. $m^{2}-18=-18$
c. $b^{2}+12=5$

Solution

a. $2 x^{2}=8 \quad$ Write original equation.
$x^{2}=4 \quad$ Divide each side by 2.
$x= \pm \sqrt{4}= \pm 2$ Take square roots of each side. Simplify.

- The solutions are -2 and 2 .
b. $m^{2}-18=-18 \quad$ Write original equation.

$$
\begin{aligned}
m^{2} & =0 & & \text { Add } 18 \text { to each side. } \\
m & =0 & & \text { The square root of } 0 \text { is } \mathbf{0} .
\end{aligned}
$$

- The solution is 0 .
c. $b^{2}+12=5 \quad$ Write original equation.
$b^{2}=-7 \quad$ Subtract 12 from each side.
- Negative real numbers do not have real square roots. So, there is no solution.

