FINDING ZEROS Because a zero of a function is an *x*-intercept of the function's graph, you can use the function's graph to find the zeros of a function.

EXAMPLE 4 Find the zeros of a quadratic function

Find the zeros of $f(x) = x^2 + 6x - 7$.

ANOTHER WAY

You can find the zeros of a function by factoring: $f(x) = x^2 + 6x - 7$ $0 = x^2 + 6x - 7$ 0 = (x + 7)(x - 1)x = -7 or x = 1

Solution

Graph the function $f(x) = x^2 + 6x - 7$. The *x*-intercepts are -7 and 1.

▶ The zeros of the function are -7 and 1.

CHECK Substitute –7 and 1 in the original function.

$$f(-7) = (-7)^2 + 6(-7) - 7 = 0 \checkmark$$

$$f(\mathbf{1}) = (\mathbf{1})^2 + 6(\mathbf{1}) - 7 = 0$$

APPROXIMATING ZEROS The zeros of a function are not necessarily integers. To approximate zeros, look at the signs of the function values. If two function values have opposite signs, then a zero falls between the *x*-values that correspond to the function values.

EXAMPLE 5 Approximate the zeros of a quadratic function

Approximate the zeros of $f(x) = x^2 + 4x + 1$ to the nearest tenth.

Solution

X

-3.9

-3.8

- **STEP 1** Graph the function $f(x) = x^2 + 4x + 1$. There are two *x*-intercepts: one between -4 and -3 and another between -1 and 0.
- **STEP 2** Make a table of values for *x*-values between -4 and -3 and between -1 and 0 using an increment of 0.1. Look for a change in the signs of the function values.

-3.7

-3.1

-3.2

INTERPRET FUNCTION VALUES

The function value that is closest to 0 indicates the *x*-value that best approximates a zero of the function.

f (x)	0.61	0.24	-0.11	-0.44	-0.75	-1.04	-1.31	-1.56	-1.79
x	-0.9	-0.8	-0.7	-0.6	-0.5	-0.4	-0.3	-0.2	-0.1
f (x)	-1.79	-1.56	-1.31	-1.04	-0.75	-0.44	-0.11	0.24	0.61

-3.5

-3.4

-3.3

In each table, the function value closest to 0 is -0.11. So, the zeros of $f(x) = x^2 + 4x + 1$ are about -3.7 and about -0.3.

-3.6

GUIDED PRACTICE for Examples 4 and 5

- 4. Find the zeros of $f(x) = x^2 + x 6$.
- 5. Approximate the zeros of $f(x) = -x^2 + 2x + 2$ to the nearest tenth.