FINDING ZEROS Because a zero of a function is an x-intercept of the function's graph, you can use the function's graph to find the zeros of a function.

EXAMPLE 4 Find the zeros of a quadratic function

ANOTHER WAY

You can find the zeros of a function by factoring:

$$
\begin{aligned}
f(x) & =x^{2}+6 x-7 \\
0 & =x^{2}+6 x-7 \\
0 & =(x+7)(x-1) \\
x & =-7 \text { or } x=1
\end{aligned}
$$

Find the zeros of $f(x)=x^{2}+6 x-7$.

Solution

Graph the function $f(x)=x^{2}+6 x-7$.
The x-intercepts are -7 and 1 .

- The zeros of the function are -7 and 1 .

CHECK Substitute -7 and 1 in the original function.

$$
\begin{aligned}
& f(-7)=(-7)^{2}+6(-7)-7=0 \\
& f(\mathbf{1})=(\mathbf{1})^{2}+6(\mathbf{1})-7=0
\end{aligned}
$$

APPROXIMATING ZEROS The zeros of a function are not necessarily integers. To approximate zeros, look at the signs of the function values. If two function values have opposite signs, then a zero falls between the x-values that correspond to the function values.

EXAMPLE 5 Approximate the zeros of a quadratic function

INTERPRET
 FUNCTION VALUES

The function value that is closest to 0 indicates the x-value that best approximates a zero of the function.

Approximate the zeros of $f(x)=x^{2}+4 x+1$ to the nearest tenth.

Solution

STEP 1 Graph the function $f(x)=x^{2}+4 x+1$. There are two x-intercepts: one between -4 and -3 and another between -1 and 0 .

STEP 2 Make a table of values for x-values between -4 and -3 and between -1 and 0 using an increment of 0.1. Look for a change in the signs of the function values.
 of function values.

\boldsymbol{x}	-3.9	-3.8	$-\mathbf{3 . 7}$	-3.6	-3.5	-3.4	-3.3	-3.2	-3.1
$\boldsymbol{f}(\boldsymbol{x})$	0.61	0.24	$-\mathbf{0 . 1 1}$	-0.44	-0.75	-1.04	-1.31	-1.56	-1.79

\boldsymbol{x}	-0.9	-0.8	-0.7	-0.6	-0.5	-0.4	$-\mathbf{0 . 3}$	-0.2	-0.1
$\boldsymbol{f}(\boldsymbol{x})$	-1.79	-1.56	-1.31	-1.04	-0.75	-0.44	$-\mathbf{0 . 1 1}$	0.24	0.61

- In each table, the function value closest to 0 is -0.11 . So, the zeros of $f(x)=x^{2}+4 x+1$ are about -3.7 and about -0.3 .

Guided Practice for Examples 4 and 5

4. Find the zeros of $f(x)=x^{2}+x-6$.
5. Approximate the zeros of $f(x)=-x^{2}+2 x+2$ to the nearest tenth.
