EXAMPLE 2 Solve a quadratic equation having one solution

Solve $-x^{2}+2 x=1$ by graphing.

Solution

STEP 1 Write the equation in standard form.
$-x^{2}+2 x=1 \quad$ Write original equation. $-x^{2}+2 x-1=0 \quad$ Subtract 1 from each side.

STEP 2 Graph the function $y=-x^{2}+2 x-1$. The x-intercept is 1 .

- The solution of the equation $-x^{2}+2 x=1$ is 1 .

AVOID ERRORS

Do not confuse y-intercepts and x-intercepts. Although the graph has a y-intercept, it does not have any x-intercepts.

EXAMPLE 3 Solve a quadratic equation having no solution

Solve $x^{2}+7=4 x$ by graphing.

Solution

STEP 1 Write the equation in standard form.

$$
\begin{aligned}
x^{2}+7 & =4 x & & \text { Write original equation. } \\
x^{2}-4 x+7 & =0 & & \text { Subtract } 4 x \text { from each side. }
\end{aligned}
$$

STEP 2 Graph the function $y=x^{2}-4 x+7$. The graph has no x-intercepts.

- The equation $x^{2}+7=4 x$ has no solution.

Solve the equation by graphing.

1. $x^{2}-6 x+8=0$
2. $x^{2}+x=-1$
3. $-x^{2}+6 x=9$

KEY CONCEPT

For Your Notebook

Number of Solutions of a Quadratic Equation

A quadratic equation has two solutions if the graph of its related function has two x-intercepts.

A quadratic equation has one solution if the graph of its related function has one x-intercept.

A quadratic equation has no real solution if the graph of its related function has no x-intercepts.

