0.3 Solve Quadratic Equations by Graphing

Key Vocabulary

quadratic equation

Before

Now Why?

• *x*-intercept, *p. 225*

• **roots,** *p*. 575

• zero of a function, *p. 337* In Chapter 9, you used factoring to solve a quadratic equation. You can also use graphing to solve a quadratic equation. Notice that the solutions of the equation $ax^2 + bx + c = 0$ are the *x*-intercepts of the graph of the related function $y = ax^2 + bx + c$.

A **quadratic equation** is an equation that can be written in the **standard**

Solve by Factoring $x^{2} - 6x + 5 = 0$ (x - 1)(x - 5) = 0x = 1 or x = 5

form $ax^2 + bx + c = 0$ where $a \neq 0$.

Solve by Graphing To solve $x^2 - 6x + 5 = 0$, graph $y = x^2 - 6x + 5$. From the graph you can see that the *x*-intercepts are 1 and 5.

READING

In this course, *solutions* refers to real-number solutions.

To solve a quadratic equation by graphing, first write the equation in standard form, $ax^2 + bx + c = 0$. Then graph the related function $y = ax^2 + bx + c$. The *x*-intercepts of the graph are the solutions, or roots, of $ax^2 + bx + c = 0$.

EXAMPLE 1 Solve a quadratic equation having two solutions

Solve $x^2 - 2x = 3$ by graphing.

Solution

STEP 1 Write the equation in standard form.

 $x^2 - 2x = 3$ Write original equation. $x^2 - 2x - 3 = 0$ Subtract 3 from each side.

STEP 2 Graph the function $y = x^2 - 2x - 3$. The *x*-intercepts are -1 and 3.

The solutions of the equation $x^2 - 2x = 3$ are -1 and 3.

CHECK You can check –1 and 3 in the original equation.

 $x^{2} - 2x = 3$ (-1)² - 2(-1) ² = 3 3 = 3 ✓ x^{2} - 2x = 3 Write original equation. Substitute for x. 3 = 3 ✓ Simplify. Each solution checks.