10.3
 A.9.D, A.10.A, A.10.B; 2A.8.D

Before
Now
Why?
You solved quadratic equations by factoring. You will solve quadratic equations by graphing. So you can solve a problem about sports, as in Example 6.

Key Vocabulary - quadratic equation

- \boldsymbol{x}-intercept, $p .225$
- roots, p. 575
- zero of a function, p. 337

A quadratic equation is an equation that can be written in the standard form $a x^{2}+b x+c=0$ where $a \neq 0$.
In Chapter 9, you used factoring to solve a quadratic equation. You can also use graphing to solve a quadratic equation. Notice that the solutions of the equation $a x^{2}+b x+c=0$ are the x-intercepts of the graph of the related function $y=a x^{2}+b x+c$.

Solve by Factoring

$$
\begin{gathered}
x^{2}-6 x+5=0 \\
(x-1)(x-5)=0 \\
x=1 \text { or } x=5
\end{gathered}
$$

Solve by Graphing

To solve $x^{2}-6 x+5=0$, graph $y=x^{2}-6 x+5$. From the graph you can see that the x-intercepts are 1 and 5 .

To solve a quadratic equation by graphing, first write the equation in standard form, $a x^{2}+b x+c=0$. Then graph the related function $y=a x^{2}+b x+c$. The x-intercepts of the graph are the solutions, or roots, of $a x^{2}+b x+c=0$.

EXAMPLE 1 Solve a quadratic equation having two solutions

Solve $x^{2}-2 x=3$ by graphing.

Solution

STEP 1 Write the equation in standard form.

$$
\begin{aligned}
x^{2}-2 x=3 & \text { Write original equation. } \\
x^{2}-2 x-3=0 & \text { Subtract } 3 \text { from each side. }
\end{aligned}
$$

STEP 2 Graph the function $y=x^{2}-2 x-3$.
The x-intercepts are -1 and 3 .

- The solutions of the equation $x^{2}-2 x=3$ are -1 and 3 .

CHECK You can check -1 and 3 in the original equation.

$$
\left.\begin{array}{rlrl}
x^{2}-2 x & =3 & x^{2}-2 x & =3 \\
(-1)^{2}-2(-1) & \stackrel{?}{=} 3 & (3)^{2}-2(3) & \stackrel{?}{=} 3
\end{array} \begin{array}{lrl}
\text { Write original equation. } \\
3 & =3 \checkmark & 3
\end{array}\right)=3 \checkmark \text { Substitute for } x . ~ S i m p l i f y . \text { Each solution checks. }
$$

