Extension
 Use after Lesson 10.2

Key Vocabulary

- intercept form

Graph Quadratic Functions in 2A.6.B

Goal Graph quadratic functions in intercept form.
In Lesson 10.2 you graphed quadratic functions written in standard form. Quadratic functions can also be written in intercept form, $y=a(x-p)(x-q)$ where $a \neq 0$. In this form, the x-intercepts of the graph can easily be determined.

KEY CONCEPT
For Your Notebook
Graph of Intercept Form $\boldsymbol{y}=\boldsymbol{a}(\boldsymbol{x}-\boldsymbol{p})(\boldsymbol{x}-\boldsymbol{q})$
Characteristics of the graph of $y=a(x-p)(x-q)$:

- The x-intercepts are p and q.
- The axis of symmetry is halfway between $(p, 0)$ and $(q, 0)$. So, the axis of symmetry is $x=\frac{p+q}{2}$.
- The parabola opens up if $a>0$ and opens down if $a<0$.

EXAMPLE 1 Graph a quadratic function in intercept form

Graph $y=-(x+1)(x-5)$.

Solution

STEP 1 Identify and plot the x-intercepts. Because $p=-1$ and $q=5$, the x-intercepts occur at the points $(-1,0)$ and $(5,0)$.

STEP 2 Find and draw the axis of symmetry.

$$
x=\frac{p+q}{2}=\frac{-1+5}{2}=2
$$

STEP 3 Find and plot the vertex.
The x-coordinate of the vertex is 2 .
To find the y-coordinate of the vertex, substitute 2 for x and simplify.

$$
y=-(2+1)(2-5)=9
$$

So, the vertex is $(2,9)$.
STEP 4 Draw a parabola through the vertex
 and the points where the x-intercepts occur.

