EXAMPLE 3 Find the minimum or maximum value

Tell whether the function $f(x)=-3 x^{2}-12 x+10$ has a minimum value or a maximum value. Then find the minimum or maximum value.

Solution

Because $a=-3$ and $-3<0$, the parabola opens down and the function has a maximum value. To find the maximum value, find the vertex.

$$
\begin{array}{ll}
x=-\frac{b}{2 a}=-\frac{-12}{2(-3)}=-2 & \text { The } x \text {-coordinate is }-\frac{b}{2 a} . \\
f(-2)=-3(-2)^{2}-12(-2)+10=22 & \text { Substitute }-2 \text { for } x \text {. Then simplify. }
\end{array}
$$

- The maximum value of the function is $f(-2)=22$.

EXAMPLE 4 Find the minimum value of a function

SUSPENSION BRIDGES The suspension cables between the two towers of the Mackinac Bridge in Michigan form a parabola that can be modeled by the graph of $y=0.000097 x^{2}-0.37 x+549$ where x and y are measured in feet. What is the height of the cable above the water at its lowest point?

Solution

The lowest point of the cable is at the vertex of the parabola. Find the x-coordinate of the vertex. Use $a=0.000097$ and $b=-0.37$.

$$
x=-\frac{b}{2 a}=-\frac{-0.37}{2(0.000097)} \approx 1910 \quad \text { Use a calculator. }
$$

Substitute 1910 for x in the equation to find the y-coordinate of the vertex.

$$
y \approx 0.000097(1910)^{2}-0.37(1910)+549 \approx 196
$$

- The cable is about 196 feet above the water at its lowest point.

Guided Practice for Examples 3 and 4

3. Tell whether the function $f(x)=6 x^{2}+18 x+13$ has a minimum value or a maximum value. Then find the minimum or maximum value.
4. SUSPENSION BRIDGES The cables between the two towers of the Takoma Narrows Bridge form a parabola that can be modeled by the graph of the equation $y=0.00014 x^{2}-0.4 x+507$ where x and y are measured in feet. What is the height of the cable above the water at its lowest point? Round your answer to the nearest foot.
