EXAMPLE 2 Graph $y=a x^{2}+b x+c$
Graph $y=3 x^{2}-6 x+2$.
STEP 1 Determine whether the parabola opens up or down. Because $a>0$, the parabola opens up.
STEP 2 Find and draw the axis of symmetry: $x=-\frac{b}{2 a}=-\frac{-6}{2(3)}=1$.
STEP 3 Find and plot the vertex.
The x-coordinate of the vertex is $-\frac{b}{2 a}$, or 1 .
To find the y-coordinate, substitute 1 for x in the function and simplify.
$y=3(1)^{2}-6(1)+2=-1$
So, the vertex is $(1,-1)$.
STEP 4 Plot two points. Choose two x-values less than the x-coordinate of the vertex. Then find the corresponding y-values.

x	0	-1
y	2	11

REVIEW
REFLECTIONS
For help with reflections, see p. 922.

AVOID ERRORS
Be sure to include the negative sign before the fraction when calculating the axis of symmetry.

STEP 6 Draw a parabola through the plotted points.
AnimatedAlgebra at classzone.com

1. Find the axis of symmetry and the vertex of the graph of the function $y=x^{2}-2 x-3$.
2. Graph the function $y=3 x^{2}+12 x-1$. Label the vertex and axis of symmetry.

KEY CONCEPT

For Your Notebook

Minimum and Maximum Values

For $y=a x^{2}+b x+c$, the y-coordinate of the vertex is the minimum value of the function if $a>0$ or the maximum value of the function if $a<0$.

$$
y=a x^{2}+b x+c, a>0
$$

$$
y=a x^{2}+b x+c, a<0
$$

