$10.2^{\text {Caph }}$
 TENS
 A.4.A, A.9.D; $y=a x^{2}+b x+c$ 2A.6.B, 2A.7.A

Before You graphed simple quadratic functions.
Now You will graph general quadratic functions.
Why? So you can investigate a cable's height, as in Example 4.

Key Vocabulary

- minimum value - maximum value

You can use the properties below to graph any quadratic function. You will justify the formula for the axis of symmetry in Exercise 38 on page 639.

KEY CONCEPT

For Your Notebook

Properties of the Graph of a Quadratic Function

The graph of $y=a x^{2}+b x+c$ is a parabola that:

- opens up if $a>0$ and opens down if $a<0$.
- is narrower than the graph of $y=x^{2}$ if $|a|>1$ and wider if $|a|<1$.
- has an axis of symmetry of $x=-\frac{b}{2 a}$.
- has a vertex with an x-coordinate of $-\frac{b}{2 a}$.
- has a y-intercept of c. So, the point $(0, c)$ is on the parabola.

IDENTIFY THE

VERTEX

Because the vertex lies on the axis of symmetry, $x=3$, the x-coordinate of the vertex is 3 .

EXAMPLE 1 Find the axis of symmetry and the vertex

Consider the function $y=-2 x^{2}+12 x-7$.
a. Find the axis of symmetry of the graph of the function.
b. Find the vertex of the graph of the function.

Solution

a. For the function $y=-2 x^{2}+12 x-7, a=-2$ and $b=12$.

$$
x=-\frac{b}{2 a}=-\frac{12}{2(-2)}=3 \quad \text { Substitute }-2 \text { for } a \text { and } 12 \text { for } b \text {. Then simplify. }
$$

b. The x-coordinate of the vertex is $-\frac{b}{2 a}$, or 3 .

To find the y-coordinate, substitute 3 for x in the function and find y.

$$
y=-2(3)^{2}+12(3)-7=11 \quad \text { Substitute } 3 \text { for } x . \text { Then simplify. }
$$

- The vertex is $(3,11)$.

