REVIEW

 VERTICAL MOTIONFor help with the vertical motion model, see p. 575.
42. FALLING OBJECTS Two acorns drop from an oak tree. One falls 45 feet, while the other falls 32 feet.
a. For each acorn, write an equation that gives the height h (in feet) of the acorn as a function of the time t (in seconds) it has fallen.
b. Describe how the graphs of the two equations are related.
43. TAKS REASONING The breaking strength w (in pounds) of a manila rope can be modeled by the function $w=8900 d^{2}$ where d is the diameter (in inches) of the rope.
a. Graph the function.
b. If a manila rope has 4 times the breaking strength of another manila rope, does the rope have 4 times the diameter of the other rope? Explain.

44. TAKS REASONING For an engineering contest, you have to create a container for an egg so that the container can be dropped from a height of 30 feet without breaking the egg.
a. The distance y (in feet) that the container falls is given by the function $y=16 t^{2}$ where t is the time (in seconds) the container has fallen. Graph the function.
b. The height y (in feet) of the dropped container is given by the function $y=-16 t^{2}+30$ where t is the time (in seconds) since the container is dropped. Graph the function.
c. How are the graphs from part (a) and part (b) related? Explain how you can use each graph to find the number of seconds after which the container has fallen 10 feet.

```
AnimatedAlgebra at classzone.com
```

45. ChALLENGE The kinetic energy E (in joules) of an object in motion is given by $E=\frac{1}{2} m v^{2}$ where m is the object's mass (in kilograms) and v is the object's velocity (in meters per second). Suppose a baseball has 918.75 joules of energy when traveling 35 meters per second. Use this information to write and graph an equation that gives the energy E of the baseball as a function of its velocity ν.

TAKS PRACTICE at classzone.com

MIXED REVIEW FOR TAKS

REVIEW

Lesson 7.1
TAKS Workbook
46. TAKS PRACTICE A fence that measures 72 feet in length encloses a rectangular patch of grass. The patch of grass has an area of 300 square feet. Which system of equations can be used to find ℓ, the length in feet of the patch of grass, and w, the width in feet of the patch of grass?
TAKS Obj. 4
(A) $2 \ell+2 w=144$
$\ell w=300$
(B) $2 \ell+2 w=72$
$300 \ell=w$
(C) $2 \ell+2 w=72$
$\ell w=300$
(D) $2 \ell+2 w=144$
$4 \ell w=300$

