ELIMINATE CHOICES

You can eliminate choice D because changing the value of c in a function of the form $y=x^{2}+c$ translates the graph up or down.

How would the graph of the function $y=x^{2}+5$ be affected if the function were changed to $y=x^{2}+3$?
(A) The graph would shift 2 units up.
(B) The graph would shift 3 units up.
(C) The graph would shift 2 units down.

EXAMPLE 5 TAKS PRACTICE: Multiple Choice

(D) The graph would shift 2 units to the left.

Solution

The vertex of the graph of $y=x^{2}+5$ is 5 units above the origin, or $(0,5)$. The vertex of the graph of $y=x^{2}+3$ is 3 units above the origin, or $(0,3)$. Moving the vertex from $(0,5)$ to $(0,3)$ translates the graph 2 units down.

- The correct answer is C. (A) (B) (C)

EXAMPLE 6 Use a graph

SOLAR ENERGY A solar trough has a reflective parabolic surface that is used to collect solar energy. The sun's rays are reflected from the surface toward a pipe that carries water. The heated water produces steam that is used to produce electricity.
The graph of the function $y=0.09 x^{2}$ models the cross section of the reflective surface where x and y are measured in meters. Use the graph to find the domain and range of the function in this situation.

Solution

STEP 1 Find the domain. In the graph, the reflective surface extends 5 meters on either side of the origin. So, the domain is $-5 \leq x \leq 5$.
STEP 2 Find the range using the fact that the lowest point on the reflective surface is $(0,0)$ and the highest point, 5 , occurs at each end.

$$
y=0.09(5)^{2}=2.25 \quad \text { Substitute } 5 \text { for } x \text {. Then simplify. }
$$

The range is $0 \leq y \leq 2.25$.

Guided Practice for Examples 5 and 6

7. Describe how the graph of the function $y=x^{2}+2$ would be affected if the function were changed to $y=x^{2}-2$.
8. WHAT IF? In Example 6, suppose the reflective surface extends just 4 meters on either side of the origin. Find the domain and range of the function in this situation.
