EXAMPLE 4 Graph $y = ax^2 + c$

Graph $y = \frac{1}{2}x^2 - 4$. Compare the graph with the graph of $y = x^2$.

STEP 1 Make a table of values for $y = \frac{1}{2}x^2 - 4$.

x	-4	-2	0	2	4
у	4	-2	-4	-2	4

STEP 2 **Plot** the points from the table.

STEP 3 **Draw** a smooth curve through the points.

STEP 4 **Compare** the graphs of $y = \frac{1}{2}x^2 - 4$ and $y = x^2$. Both graphs open up and have the same axis of symmetry, x = 0. However, the graph of $y = \frac{1}{2}x^2 - 4$ is wider and has a lower vertex than the graph of $y = x^2$ because the graph of $y = \frac{1}{2}x^2 - 4$ is a vertical shrink and a vertical translation of the graph of $y = x^2$.

 $y = x^2$

x

4

 $y = \frac{1}{2}x^2 - \frac{1}{2}x^2 -$

GUIDED PRACTICE for Example 4

Graph the function. Compare the graph with the graph of $y = x^2$. **4.** $y = 3x^2 - 6$ **5.** $y = -5x^2 + 1$ **6.** $y = \frac{3}{4}x^2 - 2$

