EXAMPLE 2 Graph $y=a x^{2}$ where $|a|<1$

Graph $y=-\frac{1}{4} x^{2}$. Compare the graph with the graph of $y=x^{2}$.

MAKE A TABLE
To make the calculations easier, choose values of x that are multiples of 2 .

STEP 1 Make a table of values for $y=-\frac{1}{4} x^{2}$.

x	-4	-2	0	2	4
y	-4	-1	0	-1	-4

STEP 2 Plot the points from the table.
STEP 3 Draw a smooth curve through the points.

STEP 4 Compare the graphs of $y=-\frac{1}{4} x^{2}$ and $y=x^{2}$. Both graphs have the same vertex $(0,0)$, and the same axis of symmetry, $x=0$. However, the graph of $y=-\frac{1}{4} x^{2}$ is wider than the graph of $y=x^{2}$ and it opens down. This is because the graph of $y=-\frac{1}{4} x^{2}$ is a vertical shrink by a factor of $\frac{1}{4}$) with a reflection in the x-axis of the graph of $y=x^{2}$.

GRAPHING QUADRATIC FUNCTIONS Examples 1 and 2 suggest the following general result: a parabola opens up when the coefficient of x^{2} is positive and opens down when the coefficient of x^{2} is negative.

EXAMPLE 3 Graph $y=x^{2}+c$

Graph $y=x^{2}+5$. Compare the graph with the graph of $y=x^{2}$.
STEP 1 Make a table of values for $y=x^{2}+5$.

x	-2	-1	0	1	2
y	9	6	5	6	9

STEP 2 Plot the points from the table.
STEP 3 Draw a smooth curve through the points.
STEP 4 Compare the graphs of $y=x^{2}+5$ and $y=x^{2}$. Both graphs open up and have the same axis of symmetry, $x=0$. However, the vertex of the graph of $y=x^{2}+5,(0,5)$, is different than the vertex of the graph of $y=x^{2},(0,0)$, because the graph of $y=x^{2}+5$ is a vertical translation (of 5 units up) of the graph of $y=x^{2}$.

Guided Practice for Examples 1, 2, and 3

Graph the function. Compare the graph with the graph of $y=x^{2}$.

1. $y=-4 x^{2}$
2. $y=\frac{1}{3} x^{2}$
3. $y=x^{2}+2$
