10.1 Graph $y=a x^{2}+c$

A.2.A, A.9.A,
A.9.B, A.9.C

Before
Now
Why?

You graphed linear and exponential functions. You will graph simple quadratic functions.
So you can solve a problem involving an antenna, as in Ex. 40.

Key Vocabulary - quadratic function - parabola
 - parent quadratic function
 - vertex
 - axis of symmetry

A quadratic function is a nonlinear function that can be written in the standard form $y=a x^{2}+b x+c$ where $a \neq 0$. Every quadratic function has a U-shaped graph called a parabola. In this lesson, you will graph quadratic functions where $b=0$.

KEY CONCEPT

For Your Notebook

Parent Quadratic Function

The most basic quadratic function in the family of quadratic functions, called the parent quadratic function, is $y=x^{2}$. The graph of $y=x^{2}$ is shown below.

The lowest or highest point on a parabola is the vertex. The vertex of the graph of $y=x^{2}$ is $(0,0)$.

The line that passes through the vertex and divides the parabola into two symmetric parts is called the axis of symmetry. The axis of symmetry for the graph of $y=x^{2}$ is the y-axis, $x=0$.

PLOT ADDITIONAL POINTS
If you are having difficulty seeing the shape of the parabola, plot additional points.

EXAMPLE 1 Graph $y=a x^{2}$ where $|a|>1$

STEP 1 Make a table of values for $y=3 x^{2}$.

x	-2	-1	0	1	2
y	12	3	0	3	12

STEP 2 Plot the points from the table.
STEP 3 Draw a smooth curve through the points.
STEP 4 Compare the graphs of $y=3 x^{2}$ and $y=x^{2}$. Both graphs open up and have the same vertex, $(0,0)$, and axis of symmetry, $x=0$. The graph of $y=3 x^{2}$ is narrower than the graph of $y=x^{2}$ because the graph of $y=3 x^{2}$ is a vertical stretch (by a factor of 3) of the graph of $y=x^{2}$.

