TAKS Obj. 8 REVIEWING PROBLEMS INVOLVING NETS OF SOLIDS

A net is a two-dimensional representation of a three-dimensional solid. Using a ruler, you can measure the dimensions of a net to determine the total surface area S, the lateral surface area L, and the volume V of the solid that the net represents. In the formulas shown, solids with a base have a base area B and a base perimeter P (or base circumference C).

REWRITE
 FORMULAS

If you know formulas for the base area B and the base perimeter P (or base circumference C), you can rewrite the formulas at the right. For instance, substituting ℓw for B and $2 w+2 l$ for P into the formulas for a rectangular prism gives $V=\ell w h$,
$S=2 \ell w+2 w h+2 \ell h$,
and $L=2 w h+2 h$.

Common Volume and Surface Area Formulas

Cylinder

$V=B h$
$V=\frac{1}{3} B h$
$V=\frac{1}{3} B h$
$S=B+\frac{1}{2} P \ell$
$S=B+\pi r l$
$S=4 \pi r^{2}$
$S=2 B+P h$
$S=2 B+C h$
$L=\frac{1}{2} P \ell$
$L=\pi r \ell$

EXAMPLE

The net of a cube is shown. Use a ruler to determine the dimensions of the cube to the nearest $\frac{1}{8}$ inch. Find the total surface area of the cube to the nearest square inch.

Solution

In order to find the total surface area S of the cube, you need to know its edge length s. Because all edge lengths are equal for a cube, it is necessary to measure only one length. The edge length of the cube is $\frac{5}{8} \mathrm{inch}$.

$$
S=6 s^{2}=6\left(\frac{25}{64}\right) \approx 2.3
$$

- The cube has a total surface area of about 2 square inches.

