CHAPTER REVIEW

REVIEW KEY VOCABULARY

- monomial, p. 554
- degree of a monomial, p. 554
- polynomial, p. 554
- trinomial, *p. 555* omial, *p. 554* • roots, *p. 575*
- degree of a polynomial, p. 554

VOCABULARY EXERCISES

1. Copy and complete: The greatest degree of the terms in a polynomial is called the <u>?</u>.

• binomial, p. 555

- **2. WRITING** Is $2x^{-1}$ a monomial? *Explain* why or why not.
- **3. WRITING** What does it mean for a polynomial to be factored completely? Give an example of a polynomial that has been factored completely.

• leading coefficient, p. 554

In Exercises 4–6, match the polynomial with its classification.

4.	5x - 22	5.	$-11x^{3}$	6.	$x^2 + x + 1$
A.	Monomial	B.	Binomial	C.	Trinomial

REVIEW EXAMPLES AND EXERCISES

Use the review examples and exercises below to check your understanding of the concepts you have learned in each lesson of Chapter 9.

9.1	Add and Subtract Polynomials	pp. 554–559			
	EXAMPLE				
	Find the difference $(3x^2 + 2) - (4x^2 - x - 9)$.				
	$\frac{3x^2 + 2}{(4x^2 - x - 9)} + \frac{3x^2 + 2}{-4x^2 + x + 9} + \frac{-4x^2 + x + 9}{-x^2 + x + 11}$				
EXAMPLES 3 and 4 on pp. 555–556 for Exs. 7–12	EXERCISES Find the sum or difference. 7. $(9x + 6x^3 - 8x^2) + (-5x^3 + 6x)$ 9. $(11y^5 + 3y^2 - 4) + (y^2 - y + 1)$ 11. $(2s^3 + 8) - (-3s^3 + 7s - 5)$	8. $(7a^3 - 4a^2 - 2a + 1) + (a^3 - 1)$ 10. $(3n^2 - 4n + 1) - (8n^2 - 4n + 17)$ 12. $(-k^2 + 7k + 5) - (2k^4 - 3k^3 - 6)$			

• vertical motion model, p. 577

- perfect square trinomial, p. 601
- factor by grouping, p. 606
- factor completely, p. 607

616 Chapter 9 Polynomials and Factoring