EXAMPLE 4 Factor completely

Factor the polynomial completely.
a. $n^{2}+2 n-1$
b. $4 x^{3}-44 x^{2}+96 x$
c. $50 h^{4}-2 h^{2}$

Solution

a. The terms of the polynomial have no common monomial factor. Also, there are no factors of -1 that have a sum of 2 . This polynomial cannot be factored.
b. $4 x^{3}-44 x^{2}+96 x=4 x\left(x^{2}-11 x+24\right) \quad$ Factor out $4 \boldsymbol{x}$.
$=4 x(x-3)(x-8) \quad$ Find two negative factors of 24 that have a sum of $\mathbf{- 1 1}$.
c. $50 h^{4}-2 h^{2}=2 h^{2}\left(25 h^{2}-1\right)$ Factor out $2 h^{2}$.
$=2 h^{2}(5 h-1)(5 h+1)$ Difference of two squares pattern

Guided Practice

for Example 4

Factor the polynomial completely.

4. $3 x^{3}-12 x$
5. $2 y^{3}-12 y^{2}+18 y$
6. $m^{3}-2 m^{2}-8 m$

EXAMPLE 5 Solve a polynomial equation

Solve $3 x^{3}+18 x^{2}=-24 x$.

$$
\begin{array}{rlrl}
3 x^{3}+18 x^{2} & =-24 x & & \text { Write original equation. } \\
3 x^{3}+18 x^{2}+24 x & =0 & & \text { Add } 24 x \text { to each side. } \\
3 x\left(x^{2}+6 x+8\right) & =0 & & \text { Factor out } 3 \boldsymbol{x} . \\
3 x(x+2)(x+4) & =0 & & \text { Factor trinomial. } \\
3 x=0 \text { or } x+2=0 & \text { or } x+4=0 & & \text { Zero-product property } \\
x=0 \quad x=-2 & x=-4 & & \text { Solve for } x .
\end{array}
$$

- The solutions of the equation are $0,-2$, and -4 .

CHECK Check each solution by substituting it for x in the equation. One check is shown here.

$$
\begin{aligned}
3(-2)^{3}+18(-2)^{2} & \stackrel{?}{=}-24(-2) \\
-24+72 & \stackrel{?}{=} 48 \\
48 & =48
\end{aligned}
$$

Guided Practice for Example 5

Solve the equation.

7. $w^{3}-8 w^{2}+16 w=0$
8. $x^{3}-25 x=0$
9. $c^{3}-7 c^{2}+12 c=0$
