EXAMPLE 4 Factor completely

Factor the polynomial completely.

a.
$$n^2 + 2n - 1$$
 b. $4x^3 - 44x^2 + 96x$ **c.** $50h^4 - 2h^2$

Solution

a. The terms of the polynomial have no common monomial factor. Also, there are no factors of -1 that have a sum of 2. This polynomial cannot be factored.

b.
$$4x^3 - 44x^2 + 96x = 4x(x^2 - 11x + 24)$$
 Factor out 4x.
 $= 4x(x - 3)(x - 8)$ Find two negative factors of 24 that have a sum of -11.
c. $50h^4 - 2h^2 = 2h^2(25h^2 - 1)$ Factor out $2h^2$.
 $= 2h^2(5h - 1)(5h + 1)$ Difference of two squares pattern

GUIDED PRACTICE for Example 4

Factor the polynomial completely.

4.
$$3x^3 - 12x$$
 5. $2y^3 - 12y^2 + 18y$ **6.** $m^3 - 2m^2 - 8m$

EXAMPLE 5 Solve a polynomial equation

Solve $3x^3 + 18x^2 = -24x$. $3x^3 + 18x^2 = -24x$ Write original equation. $3x^3 + 18x^2 + 24x = 0$ Add 24x to each side. $3x(x^2 + 6x + 8) = 0$ Factor out 3x. 3x(x+2)(x+4) = 0Factor trinomial. 3x = 0 or x + 2 = 0 or x + 4 = 0 Zero-product property x = 0 x = -2 x = -4 Solve for *x*. The solutions of the equation are 0, -2, and -4.

CHECK Check each solution by substituting it for *x* in the equation. One check is shown here.

$$3(-2)^3 + 18(-2)^2 \stackrel{?}{=} -24(-2)$$

-24 + 72 $\stackrel{?}{=} 48$
 $48 = 48 \checkmark$

GUIDED PRACTICE for Example 5

Solve the equation.

7. $w^3 - 8w^2 + 16w = 0$ **8.** $x^3 - 25x = 0$ **9.** $c^3 - 7c^2 + 12c = 0$