EXAMPLE 3 Factor by grouping

Factor $x^3 - 6 + 2x - 3x^2$.

Solution

The terms x^2 and -6 have no common factor. Use the commutative property to rearrange the terms so that you can group terms with a common factor.

$$x^{3} - 6 + 2x - 3x^{2} = x^{3} - 3x^{2} + 2x - 6$$

= $(x^{3} - 3x^{2}) + (2x - 6)$ Gr
= $x^{2}(x - 3) + 2(x - 3)$ Fa
= $(x - 3)(x^{2} + 2)$ Dis

CHECK Check your factorization using a graphing calculator. Graph $y_1 = x^3 - 6 + 2x - 3x^2$ and $y_2 = (x - 3)(x^2 + 2)$. Because the graphs coincide, you know that your factorization is correct. Rearrange terms. Group terms. Factor each group.

Distributive property

GUIDED PRACTICE	for Examples 1, 2, and 3		
Factor the express	actor the expression.		
1. $x(x-2) + (x-1)$	(2) 2. $a^3 + 3a^2 + a + 3$	3. $y^2 + 2x + yx + 2y$	

READING

If a polynomial has two or more terms and is unfactorable, it is called a *prime polynomial*. **FACTORING COMPLETELY** You have seen that the polynomial $x^2 - 1$ can be factored as (x + 1)(x - 1). This polynomial is factorable. Notice that the polynomial $x^2 + 1$ cannot be written as the product of polynomials with integer coefficients. This polynomial is unfactorable. A factorable polynomial with integer coefficients is **factored completely** if it is written as a product of unfactorable polynomials with integer coefficients.

CONCEPT SUMMARY

Guidelines for Factoring Polynomials Completely

To factor a polynomial completely, you should try each of these steps.

 Factor out the greatest common monomial factor. (Lesson 9.4) 	$3x^2 + 6x = 3x(x + 2)$
2. Look for a difference of two squares or a perfect square trinomial. (<i>Lesson 9.7</i>)	$x^2 + 4x + 4 = (x + 2)^2$
3. Factor a trinomial of the form $ax^2 + bx + c$ into a product of binomial factors. <i>(Lessons 9.5 and 9.6)</i>	$3x^2 - 5x - 2 = (3x + 1)(x - 2)$
 Factor a polynomial with four terms by grouping. (Lesson 9.8) 	$x^{3} + x - 4x^{2} - 4 = (x^{2} + 1)(x - 4)$

For Your Notebook