EXAMPLE 3 Factor by grouping

Factor $x^{3}-6+2 x-3 x^{2}$.

Solution

The terms x^{2} and -6 have no common factor. Use the commutative property to rearrange the terms so that you can group terms with a common factor.

$$
\begin{aligned}
x^{3}-6+2 x-3 x^{2} & =x^{3}-3 x^{2}+2 x-6 & & \text { Rearrange terms. } \\
& =\left(x^{3}-3 x^{2}\right)+(2 x-6) & & \text { Group terms. } \\
& =x^{2}(x-3)+2(x-3) & & \text { Factor each group. } \\
& =(x-3)\left(x^{2}+2\right) & & \text { Distributive property }
\end{aligned}
$$

CHECK Check your factorization using a graphing calculator. Graph $y_{1}=x^{3}-6+2 x-3 x^{2}$ and $y_{2}=(x-3)\left(x^{2}+2\right)$. Because the graphs coincide, you know that your factorization is correct.

Guided Practice for Examples 1, 2, and 3

Factor the expression.

1. $x(x-2)+(x-2)$
2. $a^{3}+3 a^{2}+a+3$
3. $y^{2}+2 x+y x+2 y$

READING
If a polynomial has two or more terms and is unfactorable, it is called a prime polynomial.

FACTORING COMPLETELY You have seen that the polynomial $x^{2}-1$ can be factored as $(x+1)(x-1)$. This polynomial is factorable. Notice that the polynomial $x^{2}+1$ cannot be written as the product of polynomials with integer coefficients. This polynomial is unfactorable. A factorable polynomial with integer coefficients is factored completely if it is written as a product of unfactorable polynomials with integer coefficients.

CONCEPT SUMMARY

Guidelines for Factoring Polynomials Completely

To factor a polynomial completely, you should try each of these steps.

1. Factor out the greatest common monomial factor.

$$
3 x^{2}+6 x=3 x(x+2)
$$ (Lesson 9.4)

2. Look for a difference of two squares or a perfect

$$
x^{2}+4 x+4=(x+2)^{2}
$$ square trinomial. (Lesson 9.7)

3. Factor a trinomial of the form $a x^{2}+b x+c$ into a product $3 x^{2}-5 x-2=(3 x+1)(x-2)$ of binomial factors. (Lessons 9.5 and 9.6)
4. Factor a polynomial with four terms by grouping.

$$
x^{3}+x-4 x^{2}-4=\left(x^{2}+1\right)(x-4)
$$ (Lesson 9.8)

