9.8 Factor Polynomials Completely
 teks A.1.C, A.4.A

Before
Now
Why?

You factored polynomials.
You will factor polynomials completely.
So you can model the height of a projectile, as in Ex. 71.

Key Vocabulary

- factor by grouping
- factor completely

You have used the distributive property to factor a greatest common monomial from a polynomial. Sometimes, you can factor out a common binomial.

EXAMPLE 1 Factor out a common binomial

Factor the expression.

a. $2 x(x+4)-3(x+4)$
b. $3 y^{2}(y-2)+5(2-y)$

Solution

a. $2 x(x+4)-3(x+4)=(x+4)(2 x-3)$
b. The binomials $y-2$ and $2-y$ are opposites. Factor -1 from $2-y$ to obtain a common binomial factor.

$$
\begin{aligned}
3 y^{2}(y-2)+5(2-y) & =3 y^{2}(y-2)-5(y-2) & & \text { Factor -1 from }(2-y) . \\
& =(y-2)\left(3 y^{2}-5\right) & & \text { Distributive property }
\end{aligned}
$$

GROUPING You may be able to use the distributive property to factor polynomials with four terms. Factor a common monomial from pairs of terms, then look for a common binomial factor. This is called factor by grouping.

EXAMPLE 2 Factor by grouping

Factor the polynomial.
a. $x^{3}+3 x^{2}+5 x+15$
b. $y^{2}+y+y x+x$

Solution

CHECK WORK

Remember that you can check a factorization by multiplying the factors.
a. $x^{3}+3 x^{2}+5 x$

$$
\begin{array}{ll}
=x^{2}(x+3)+5(x+3) & \text { Factor each group. } \\
=(x+3)\left(x^{2}+5\right) & \text { Distributive property }
\end{array}
$$

b. $y^{2}+y+y x+x=\left(y^{2}+y\right)+(y x+x) \quad$ Group terms.

$$
\begin{array}{ll}
=y(y+1)+x(y+1) & \\
=(y+1)(y+x) & \\
\text { Factor each group. } \\
\text { Distributive property }
\end{array}
$$

