9.8 Factor Polynomials Completely

Before	You factored polynomials.	
Now	You will factor polynomials completely.	
Why?	So you can model the height of a projectile, as in Ex. 71.	

Key Vocabulary

factor by grouping

factor completely

You have used the distributive property to factor a greatest common monomial from a polynomial. Sometimes, you can factor out a common binomial.

EXAMPLE 1 Factor out a common binomial

Factor the expression.

a. 2x(x+4) - 3(x+4)

Solution

a. 2x(x + 4) - 3(x + 4) = (x + 4)(2x - 3)

b. The binomials y - 2 and 2 - y are opposites. Factor -1 from 2 - y to obtain a common binomial factor.

$$3y^{2}(y-2) + 5(2-y) = 3y^{2}(y-2) - 5(y-2)$$
 Factor -1 from (2 - y).
= (y - 2)(3y^{2} - 5) Distributive property

GROUPING You may be able to use the distributive property to factor polynomials with four terms. Factor a common monomial from pairs of terms, then look for a common binomial factor. This is called **factor by grouping**.

EXAMPLE 2 Factor by grouping

Factor the polynomial.

a.	x^3	+	$3x^2$	+	5 <i>x</i>	+	15
----	-------	---	--------	---	------------	---	----

b. $y^2 + y + yx + x$

b. $3y^2(y-2) + 5(2-y)$

Solution

a.
$$x^3 + 3x^2 + 5x + 15 = (x^3 + 3x^2) + (5x + 15)$$
 Group terms.
 $= x^2(x + 3) + 5(x + 3)$ Factor each group.
 $= (x + 3)(x^2 + 5)$ Distributive property
b. $y^2 + y + yx + x = (y^2 + y) + (yx + x)$ Group terms.
 $= y(y + 1) + x(y + 1)$ Factor each group.
 $= (y + 1)(y + x)$ Distributive property

CHECK WORK

Remember that you can check a factorization by multiplying the factors.