EXAMPLE 5 Solve a polynomial equation

Solve the equation $x^{2}+\frac{2}{3} x+\frac{1}{9}=0$.

$$
\begin{aligned}
x^{2}+\frac{2}{3} x+\frac{1}{9} & =0 & & \text { Write original equation. } \\
9 x^{2}+6 x+1 & =0 & & \text { Multiply each side by } 9 . \\
(3 x)^{2}+2(3 x \cdot 1)+(1)^{2} & =0 & & \text { Write left side as } a^{2}+2 a b+b^{2} . \\
\cdots \cdots \cdots \cdots \cdots \cdot(3 x+1)^{2} & =0 & & \text { Perfect square trinomial pattern } \\
3 x+1 & =0 & & \text { Zero-product property } \\
x & =-\frac{1}{3} & & \text { Solve for } \boldsymbol{x} .
\end{aligned}
$$

- The solution of the equation is $-\frac{1}{3}$.

EXAMPLE 6 Solve a vertical motion problem

FALLING OBJECT A window washer drops a wet sponge from a height of 64 feet. After how many seconds does the sponge land on the ground?

Solution

Use the vertical motion model to write an equation for the height h (in feet) of the sponge as a function of the time t (in seconds) after it is dropped.

The sponge was dropped, so it has no initial vertical velocity. Find the value of t for which the
 height is 0 .

h	$=-16 t^{2}+v t+s$		Vertical motion model
0	$=-16 t^{2}+(0) t+64$		Substitute $\mathbf{0}$ for $\boldsymbol{h}, \mathbf{0}$ for \mathbf{v}, and $\mathbf{6 4}$ for \mathbf{s}.
0	$=-16\left(t^{2}-4\right)$		Factor out $-\mathbf{1 6 .}$
0	$=-16(t-2)(t+2)$		Difference of two squares pattern
$t-2$	$=0 \quad$ or $t+2=0$		Zero-product property
t	$=2$ or $\quad t=-2$		Solve for t.

Disregard the negative solution of the equation.

- The sponge lands on the ground 2 seconds after it is dropped.

Guided Practice for Examples 5 and 6

Solve the equation.

5. $a^{2}+6 a+9=0$
6. $w^{2}-14 w+49=0$
7. $n^{2}-81=0$
8. WHAT IF? In Example 6, suppose the sponge is dropped from a height of 16 feet. After how many seconds does it land on the ground?
