9.7 Factor Special Products

TEKS A.4.A, A.10.A

Before
Now
Why?

You factored polynomials of the form $a x^{2}+b x+c$. You will factor special products.
So you can use a scientific model, as in Ex. 48.

Key Vocabulary - perfect square trinomial

You can use the special product patterns you studied in Lesson 9.3 to factor polynomials, such as the difference of two squares.

KEY CONCEPT

For Your Notebook
Difference of Two Squares Pattern
Algebra
Example
$a^{2}-b^{2}=(a+b)(a-b)$

EXAMPLE 1 Factor the difference of two squares

Factor the polynomial.

a. $y^{2}-16=y^{2}-4^{2}$
$=(y+4)(y-4) \quad$ Difference of two squares pattern
b. $25 m^{2}-36=(5 m)^{2}-6^{2} \quad$ Write as $\boldsymbol{a}^{2}-\boldsymbol{b}^{2}$.

$$
=(5 m+6)(5 m-6)
$$

Difference of two squares pattern
c. $x^{2}-49 y^{2}=x^{2}-(7 y)^{2}$
$=(x+7 y)(x-7 y)$

Write as $a^{2}-b^{2}$.

Difference of two squares pattern

EXAMPLE 2 Factor the difference of two squares

Factor the polynomial $8-18 n^{2}$.

$$
\begin{aligned}
8-18 n^{2} & =2\left(4-9 n^{2}\right) & & \text { Factor out common factor. } \\
& =2\left[2^{2}-(3 n)^{2}\right] & & \text { Write } 4-9 \boldsymbol{n}^{2} \text { as } \boldsymbol{a}^{2}-\boldsymbol{b}^{2} . \\
& =2(2+3 n)(2-3 n) & & \text { Difference of two squares pattern }
\end{aligned}
$$

Guided Practice for Examples 1 and 2

1. Factor the polynomial $4 y^{2}-64$.
