9.6 Factor $a x^{2}+b x+c$

teks A.4.A, A.10.A

Before
Now
Why?

You factored trinomials of the form $x^{2}+b x+c$. You will factor trinomials of the form $a x^{2}+b x+c$. So you can find the dimensions of a building, as in Ex. 61.

Key Vocabulary

- trinomial, p. 555

When factoring a trinomial of the form $a x^{2}+b x+c$, first consider the signs of b and c, as in Lesson 9.5. This approach works when a is positive.

EXAMPLE 1 Factor when \boldsymbol{b} is negative and \boldsymbol{c} is positive

Factor $2 x^{2}-7 x+3$.

Solution

REVIEW FACTORING

For help with determining the signs of the factors of a trinomial, see p. 584.

Because b is negative and c is positive, both factors of c must be negative. Make a table to organize your work.

You must consider the order of the factors of 3, because the x-terms of the possible factorizations are different.

Factors of $\mathbf{2}$	Factors of 3	Possible factorization	Middle term when multiplied
1,2	$-1,-3$	$(x-1)(2 x-3)$	$-3 x-2 x=-5 x$
1,2	$-3,-1$	$(x-3)(2 x-1)$	$-x-6 x=-7 x$

- $2 x^{2}-7 x+3=(x-3)(2 x-1)$

EXAMPLE 2 Factor when b is positive and c is negative

Factor $3 n^{2}+14 n-5$.

Solution

Because b is positive and c is negative, the factors of c have different signs.

Factors of 3	Factors of -5	Possible factorization	Middle term when multiplied	x
1, 3	1, -5	$(n+1)(3 n-5)$	$-5 n+3 n=-2 n$	
1, 3	-1, 5	$(n-1)(3 n+5)$	$5 n-3 n=2 n$	x
1, 3	5, -1	$(n+5)(3 n-1)$	$-n+15 n=14 n$	
1, 3	$-5,1$	$(n-5)(3 n+1)$	$n-15 n=-14 n$	

$-3 n^{2}+14 n-5=(n+5)(3 n-1)$

