FACTORING When factoring a trinomial, first consider the signs of *p* and *q*.

(x+p)(x+q)	$x^2 + bx + c$	Signs of <i>b</i> and <i>c</i>
(x + 2)(x + 3)	$x^2 + 5x + 6$	<i>b</i> is positive; <i>c</i> is positive.
(x + 2)(x + (-3))	$x^2 - x - 6$	<i>b</i> is negative; <i>c</i> is negative.
(x + (-2))(x + 3)	$x^2 + x - 6$	<i>b</i> is positive; <i>c</i> is negative.
(x + (-2))(x + (-3))	$x^2 - 5x + 6$	<i>b</i> is negative; <i>c</i> is positive.

By observing the signs of *b* and *c* in the table, you can see that:

- *b* and *c* are positive when both *p* and *q* are positive.
- *b* is negative and *c* is positive when both *p* and *q* are negative.
- *c* is negative when *p* and *q* have different signs.

EXAMPLE 2 Factor when *b* is negative and *c* is positive

Factor $n^2 - 6n + 8$.

Because *b* is negative and *c* is positive, *p* and *q* must both be negative.

Factors of 8	Sum of factors	
-8, -1	-8 + (-1) = -9	×
-4, -2	-4 + (-2) = -6	← Correct sum

$$n^2 - 6n + 8 = (n - 4)(n - 2)$$

EXAMPLE 3 Factor when *b* is positive and *c* is negative

Factor $y^2 + 2y - 15$.

Because *c* is negative, *p* and *q* must have different signs.

Factors of -15	Sum of factors	
-15, 1	-15 + 1 = -14	×
15, -1	15 + (-1) = 14	×
-5, 3	-5 + 3 = -2	×
5, -3	5 + (-3) = 2	←

$$y^2 + 2y - 15 = (y + 5)(y - 3)$$

GUIDED PRACTICE
for Examples 2 and 3

Factor the trinomial.
 $4. x^2 - 4x + 3$ $5. t^2 - 8t + 12$ $6. m^2 + m - 20$ $7. w^2 + 6w - 16$