FACTORING When factoring a trinomial, first consider the signs of p and q.

$(x+p)(x+q)$	$x^{2}+b x+c$	Signs of b and c
$(x+2)(x+3)$	$x^{2}+5 x+6$	b is positive; c is positive.
$(x+2)(x+(-3))$	$x^{2}-x-6$	b is negative; c is negative.
$(x+(-2))(x+3)$	$x^{2}+x-6$	b is positive; c is negative.
$(x+(-2))(x+(-3))$	$x^{2}-5 x+6$	b is negative; c is positive.

By observing the signs of b and c in the table, you can see that:

- b and c are positive when both p and q are positive.
- b is negative and c is positive when both p and q are negative.
- c is negative when p and q have different signs.

EXAMPLE 2 Factor when \boldsymbol{b} is negative and \boldsymbol{c} is positive

Factor $\boldsymbol{n}^{2}-\mathbf{6 n}+8$.
Because b is negative and c is positive, p and q must both be negative.

Factors of 8	Sum of factors	
-8, -1	$-8+(-1)=-9$	x
-4, -2	$-4+(-2)=-6$	\longleftarrow Correct sum

EXAMPLE 3 Factor when b is positive and c is negative

Factor $\boldsymbol{y}^{2}+2 y-15$.
Because c is negative, p and q must have different signs.

Factors of -15	Sum of factors	x
-15, 1	$-15+1=-14$	
15, -1	$15+(-1)=14$	x
$-5,3$	$-5+3=-2$	x
5, -3	$5+(-3)=2$	

$y^{2}+2 y-15=(y+5)(y-3)$

GUIDED PRACTICE for Examples 2 and 3

Factor the trinomial.

4. $x^{2}-4 x+3$
5. $t^{2}-8 t+12$
6. $m^{2}+m-20$
7. $w^{2}+6 w-16$
