

A.10.A

You factored out the greatest common monomial factor. You will factor trinomials of the form $x^2 + bx + c$. So you can find the dimensions of figures, as in Ex. 61.

Key Vocabulary

• zero of a function, p. 337

From Lesson 9.2, you know that

 $(x + 3)(x + 4) = x^{2} + (4 + 3)x + 4 \cdot 3 = x^{2} + 7x + 12.$

You will reverse this process to factor trinomials of the form $x^2 + bx + c$.

	KEY CO	СЕРТ	For Your Notebook
0000	Factorin	$3x^2 + bx + c$	
000	Algebra	$x^{2} + bx + c = (x + p)(x + q)$ provided $p + c$	+ q = b and $pq = c$.
0000	Example	$x^{2} + 5x + 6 = (x + 3)(x + 2)$ because 3 +	$2 = 5$ and $3 \cdot 2 = 6$.

EXAMPLE 1 Factor when *b* and *c* are positive

Factor $x^2 + 11x + 18$.

Solution

Find two positive factors of 18 whose sum is 11. Make an organized list.

	Sum of factors	Factors of 18
×	18 + 1 = 19	18, 1
- Correct sum	9 + 2 = 11	9, 2
×	6 + 3 = 9	6, 3

The factors 9 and 2 have a sum of 11, so they are the correct values of *p* and *q*.

 $x^{2} + 11x + 18 = (x + 9)(x + 2)$ **CHECK** $(x + 9)(x + 2) = x^2 + 2x + 9x + 18$ Multiply binomials. $= x^2 + 11x + 18$ **Simplify.**

GUIDED PRACTICE for Example 1 Factor the trinomial. **1.** $x^2 + 3x + 2$ **2.** $a^2 + 7a + 10$ 3. $t^2 + 9t + 14$