FACTORING EXPRESSIONS Factor out the greatest common monomial factor.

40. $20x^2y^2 - 4xy$	41. $8a^2b - 6ab^2$	42. $18s^2t^5 - 2s^3t$
43. $v^3 - 5v^2 + 9v$	44. $-2g^4 + 14g^2 + 6g$	45. $6q^5 - 21q^4 - 15q^2$

HINT

For help with finding zeros of functions, see p. 335.

FINDING ZEROS OF FUNCTIONS Find the zeros of the function.

46. $f(x) = x^2 - 15x$

- 47. $f(x) = -2x^2 + x$ **48.** $f(x) = 3x^2 - 27x$
- **49.** CHALLENGE Consider the equation ab = 0. Assume that $a \neq 0$ and solve the equation for *b*. Then assume that $b \neq 0$ and solve the equation for *a*. What conclusion can you draw about the values of a and b?
- **50.** CHALLENGE Consider the equation $z = x^2 xy$. For what values of *x* and *y* does z = 0?

PROBLEM SOLVING

EXAMPLE 5 on p. 577 for Exs. 51–53 **51. MOTION** A cat leaps from the ground into the air with an initial vertical velocity of 11 feet per second. After how many seconds does the cat land on the ground?

TEXAS @HomeTutor for problem solving help at classzone.com

- **52. SPITTLEBUG** A spittlebug jumps into the air with an initial vertical velocity of 10 feet per second.
 - a. Write an equation that gives the height of the spittlebug as a function of the time (in seconds) since it left the ground.
 - **b.** The spittlebug reaches its maximum height after 0.3125 second. How high can it jump?

TEXAS @HomeTutor for problem solving help at classzone.com

53. **TAKS REASONING** A penguin jumps out of the water while swimming. This action is called porpoising. The height *h* (in feet) of the porpoising penguin can be modeled by $h = -16t^2 + 4.5t$ where t is the time (in seconds) since the penguin jumped out of the water. Find the zeros of the function. Explain what the zeros mean in this situation.

VERTICAL MOTION In Exercises 54 and 55, use the information below.

The height *h* (in meters) of a projectile can be modeled by $h = -4.9t^2 + vt + s$ where *t* is the time (in seconds) the object has been in the air, *v* is the initial vertical velocity (in meters per second), and *s* is the initial height (in meters).

54. SOCCER A soccer ball is kicked upward from the ground with an initial vertical velocity of 3.6 meters per second. After how many seconds does it land?

55. **RABBIT HIGH JUMP** A rabbit in a high jump competition leaves the ground with an initial vertical velocity of 4.9 meters per second.

- a. Write an equation that gives the height of the rabbit as a function of the time (in seconds) since it left the ground.
- **b.** What is a reasonable domain for the function? *Explain* your answer.