Solve the equation.

3. $a^{2}+5 a=0$
4. $3 s^{2}-9 s=0$
5. $4 x^{2}=2 x$

VERTICAL MOTION A projectile is an object that is propelled into the air but has no power to keep itself in the air. A thrown ball is a projectile, but an airplane is not. The height of a projectile can be described by the vertical motion model.

KEY CONCEPT

For Your Notebook

UNDERSTAND

 THE MODEL The vertical motion model takes into account the effect of gravity but ignores other, less significant, factors such as air resistance.
Vertical Motion Model

The height h (in feet) of a projectile can be modeled by

$$
h=-16 t^{2}+v t+s
$$

where t is the time (in seconds) the object has been in the air, v is the initial vertical velocity (in feet per second), and s is the initial height (in feet).

AVOID ERRORS

The solution $t=0$ means that before the armadillo jumps, its height above the ground is 0 feet.

EXAMPLE 5 TAKS REASONING: Multi-Step Problem

ARMADILLO A startled armadillo jumps straight into the air with an initial vertical velocity of 14 feet per second. After how many seconds does it land on the ground?

Solution

STEP 1 Write a model for the armadillo's height above the ground.
$h=-16 t^{2}+\nu t+s \quad$ Vertical motion model
$h=-16 t^{2}+14 t+0$
Substitute 14 for v and 0 for s.

$h=-16 t^{2}+14 t \quad$ Simplify.
STEP 2 Substitute 0 for h. When the armadillo lands, its height above the ground is 0 feet. Solve for t.

$0=-16 t^{2}+14 t$	Substitute 0 for h.	
$0=2 t(-8 t+7)$	Factor right side.	
$2 t=0$	or $\quad-8 t+7=0$	Zero-product property
$t=0$	or $\quad t=0.875$	Solve for t.

- The armadillo lands on the ground 0.875 second after the armadillo jumps.

Guided Practice for Example 5

6. WHAT IF? In Example 5, suppose the initial vertical velocity is 12 feet per second. After how many seconds does the armadillo land on the ground?
