REVIEW GCF For help with finding the GCF, see p. 910. **FACTORING** To solve a polynomial equation using the zero-product property, you may need to *factor* the polynomial, or write it as a product of other polynomials. Look for the *greatest common factor* (GCF) of the polynomial's terms. This is a monomial with an integer coefficient that divides evenly into each term.

EXAMPLE 2 Find the greatest common monomial factor

Factor out the greatest common monomial factor.

a. 12x + 42y

b. $4x^4 + 24x^3$

Solution

a. The GCF of 12 and 42 is 6. The variables *x* and *y* have no common factor. So, the greatest common monomial factor of the terms is 6.

$$12x + 42y = 6(2x + 7y)$$

b. The GCF of 4 and 24 is 4. The GCF of x^4 and x^3 is x^3 . So, the greatest common monomial factor of the terms is $4x^3$.

$$4x^4 + 24x^3 = 4x^3(x+6)$$

GUIDED PRACTICE for Example 2

2. Factor out the greatest common monomial factor from 14m + 35n.

EXAMPLE 3 Solve an equation by factoring

Solve $2x^2 + 8x = 0$.	
$2x^2 + 8x = 0$	Write original equation.
2x(x+4)=0	Factor left side.
2x = 0 or $x + 4 = 0$	Zero-product property
x = 0 or $x = -4$	Solve for <i>x</i> .

The solutions of the equation are 0 and -4.

EXAMPLE 4 Solve an equation by factoring

	Solve $6n^2 = 15n$.	
AVOID ERRORS To use the zero-product	$\cdots > 6n^2 - 15n = 0$	Subtract 15 <i>n</i> from each side.
property, you must	3n(2n-5)=0	Factor left side.
write the equation so that one side is 0. For	3n = 0 or $2n - 5 = 0$	Zero-product property
this reason, 15 <i>n</i> must be subtracted from each	$n = 0$ or $n = \frac{5}{2}$	Solve for <i>n</i> .
side.	The solutions of the equation are 0 and $\frac{5}{2}$.	