REVIEW GCF For help with finding the GCF, see p. 910.

FACTORING To solve a polynomial equation using the zero-product property, you may need to factor the polynomial, or write it as a product of other polynomials. Look for the greatest common factor (GCF) of the polynomial's terms. This is a monomial with an integer coefficient that divides evenly into each term.

EXAMPLE 2 Find the greatest common monomial factor

Factor out the greatest common monomial factor.
a. $12 x+42 y$
b. $4 x^{4}+24 x^{3}$

Solution

a. The GCF of 12 and 42 is 6 . The variables x and y have no common factor. So, the greatest common monomial factor of the terms is 6 .
$>12 x+42 y=6(2 x+7 y)$
b. The GCF of 4 and 24 is 4 . The GCF of x^{4} and x^{3} is x^{3}. So, the greatest common monomial factor of the terms is $4 x^{3}$.
$4 x^{4}+24 x^{3}=4 x^{3}(x+6)$

GUIDED PRACTICE for Example 2

2. Factor out the greatest common monomial factor from $14 m+35 n$.

EXAMPLE 3 Solve an equation by factoring

Solve $2 x^{2}+8 x=0$.

$2 x^{2}+8 x=0$	Write original equation.	
$2 x(x+4)=0$	Factor left side.	
$2 x=0$	or	$x+4=0$
$x=0$	or	$x=-4$
Zero-product property		
2x	Solve for x.	

- The solutions of the equation are 0 and -4 .

EXAMPLE 4 Solve an equation by factoring

AVOID ERRORS
To use the zero-product property, you must write the equation so that one side is 0 . For this reason, $15 n$ must be subtracted from each side.

Solve $6 n^{2}=15 n$.
$6 n^{2}-15 n=0$ Subtract $15 n$ from each side.
$3 n(2 n-5)=0 \quad$ Factor left side.
$3 n=0 \quad$ or $\quad 2 n-5=0 \quad$ Zero-product property
$n=0 \quad$ or $\quad n=\frac{5}{2} \quad$ Solve for n.
The solutions of the equation are 0 and $\frac{5}{2}$.

