9. 4 Solve Polynomial Equations in Factored Form
 teks A.4.A, A.10.A

Before	You solved linear equations.
Now	You will solve polynomial equations.
Why	So you can analyze vertical motion, as in Ex. 55.

Key Vocabulary

- roots
- vertical motion model

In Lesson 2.4, you learned the property of zero: For any real number a, $a \cdot 0=0$. This is equivalent to saying:

For real numbers a and b, if $a=0$ or $b=0$, then $a b=0$.
The converse of this statement is also true (as shown in Exercise 49), and it is called the zero-product property.

KEY CONCEPT

For Your Notebook

Zero-Product Property

Let a and b be real numbers. If $a b=0$, then $a=0$ or $b=0$.

The zero-product property is used to solve an equation when one side is zero and the other side is a product of polynomial factors. The solutions of such an equation are also called roots.

EXAMPLE 1 Use the zero-product property

Solve $(x-4)(x+2)=0$.

$$
\begin{array}{rlrrrl}
& (x-4)(x+2) & =0 & & \text { Write original equation. } \\
x-4=0 & \text { or } & x+2 & =0 & & \text { Zero-product property } \\
x=4 & \text { or } & x & =-2 & & \text { Solve for } x .
\end{array}
$$

- The solutions of the equation are 4 and -2 .

CHECK Substitute each solution into the original equation to check.

$$
\begin{array}{rlrl}
(4-4)(4+2) & \stackrel{?}{=} 0 & (-2-4)(-2+2) & \stackrel{?}{=} 0 \\
0 \cdot 6 & \stackrel{?}{=} 0 & -6 \cdot 0 \stackrel{?}{=} 0 \\
0 & =0 \checkmark & 0 & =0 \checkmark
\end{array}
$$

Guided Practice for Example 1

1. Solve the equation $(x-5)(x-1)=0$.
