SUM AND DIFFERENCE PATTERN To find the product $(x+2)(x-2)$, you can multiply the two binomials using the FOIL pattern.

This suggests a pattern for the product of the sum and difference of two terms.

KEY CONCEPT

Sum and Difference Pattern

Algebra
$(a+b)(a-b)=a^{2}-b^{2}$

Example

$(x+3)(x-3)=x^{2}-9$

EXAMPLE 2 Use the sum and difference pattern

Find the product.
a. $(t+5)(t-5)=t^{2}-5^{2} \quad$ Sum and difference pattern

$$
=t^{2}-25 \quad \text { Simplify }
$$

b. $(3 x+y)(3 x-y)=(3 x)^{2}-y^{2} \quad$ Sum and difference pattern

$$
=9 x^{2}-y^{2} \quad \text { Simplify. }
$$

Guided Practice for Example 2

Find the product.
5. $(x+10)(x-10)$
6. $(2 x+1)(2 x-1)$
7. $(x+3 y)(x-3 y)$

SPECIAL PRODUCTS AND MENTAL MATH The special product patterns can help you use mental math to find certain products of numbers.

EXAMPLE 3 Use special products and mental math

Use special products to find the product $26 \cdot 34$.

Solution

Notice that 26 is 4 less than 30 while 34 is 4 more than 30 .

$$
\begin{aligned}
26 \cdot 34 & =(30-4)(30+4) & & \text { Write as product of difference and sum. } \\
& =30^{2}-4^{2} & & \text { Sum and difference pattern } \\
& =900-16 & & \text { Evaluate powers. } \\
& =884 & & \text { Simplify. }
\end{aligned}
$$

