9.3 Find Special Products of Polynomials
 teks A.4.A, A.4.B

Before
Now
Why?

You multiplied polynomials.
You will use special product patterns to multiply polynomials.
So you can make a scientific prediction, as in Example 4.

Key Vocabulary

- binomial, p. 555
- trinomial, p. 555

The diagram shows a square with a side length of $(a+b)$ units. You can see that the area of the square is

$$
(a+b)^{2}=a^{2}+2 a b+b^{2} .
$$

This is one version of a pattern called the square of a binomial. To find another version of this pattern, use algebra: replace b with $-b$.

$$
\begin{aligned}
(a+(-b))^{2} & =a^{2}+2 a(-b)+(-b)^{2} & & \text { Replace } \boldsymbol{b} \text { with }-\boldsymbol{b} \text { in the pattern above. } \\
(a-b)^{2} & =a^{2}-2 a b+b^{2} & & \text { Simplify. }
\end{aligned}
$$

KEY CONCEPT

Square of a Binomial Pattern

Algebra

$(a+b)^{2}=a^{2}+2 a b+b^{2}$
$(a-b)^{2}=a^{2}-2 a b+b^{2}$

Example

$(x+5)^{2}=x^{2}+10 x+25$
$(2 x-3)^{2}=4 x^{2}-12 x+9$

EXAMPLE 1 Use the square of a binomial pattern

USE PATTERNS

When you use special product patterns, remember that a and b can be numbers, variables, or variable expressions.

Find the product.
a. $(3 x+4)^{2}=(3 x)^{2}+2(3 x)(4)+4^{2}$

$$
=9 x^{2}+24 x+16
$$

b. $(5 x-2 y)^{2}=(5 x)^{2}-2(5 x)(2 y)+(2 y)^{2}$

$$
=25 x^{2}-20 x y+4 y^{2}
$$

Square of a binomial pattern Simplify. Square of a binomial pattern Simplify.

Guided Practice for Example 1

Find the product.

1. $(x+3)^{2}$
2. $(2 x+1)^{2}$
3. $(4 x-y)^{2}$
4. $(3 m+n)^{2}$
