9.3 Find Special Products of Polynomials

You multiplied polynomials.

You will use special product patterns to multiply polynomials. So you can make a scientific prediction, as in Example 4.

Key Vocabulary

• binomial, *p. 555* • trinomial, *p. 555* The diagram shows a square with a side length of (a + b) units. You can see that the area of the square is

$$(a+b)^2 = a^2 + 2ab + b^2$$

This is one version of a pattern called the square of a binomial. To find another version of this pattern, use algebra: replace b with -b.

$$(a + (-b))^{2} = a^{2} + 2a(-b) + (-b)^{2}$$
$$(a - b)^{2} = a^{2} - 2ab + b^{2}$$

Simplify.

111	KEY CONCEPT	For Your Notebook	
2222	Square of a Binomial Pattern		
1000	Algebra	Example	
2999	$(a+b)^2 = a^2 + 2ab + b^2$	$(x+5)^2 = x^2 + 10x + 25$	
2222	$(a-b)^2 = a^2 - 2ab + b^2$	$(2x-3)^2 = 4x^2 - 12x + 9$	

EXAMPLE 1 Use the square of a binomial pattern

Find the product.

When you use special product patterns, remember that *a* and *b* can be numbers, variables, or variable expressions.

USE PATTERNS

ł

a.	$(3x+4)^2 = (3x)^2 + 2(3x)(4) + 4^2$	Square of a binomial pattern
	$=9x^2+24x+16$	Simplify.
b.	$(5x - 2y)^2 = (5x)^2 - 2(5x)(2y) + (2y)^2$	Square of a binomial pattern
	$= 25x^2 - 20xy + 4y^2$	Simplify.

Guided Practice
for Example 1

Find the product.
1.
$$(x + 3)^2$$
2. $(2x + 1)^2$
3. $(4x - y)^2$
4. $(3m + n)^2$