9.2 Multiply Polynomials

teks
A.1.C, A.4.A,
A.4.B

Before
Now
Why? You added and subtracted polynomials. You will multiply polynomials.
So you can determine areas, as in Example 7.

Key Vocabulary - polynomial, $p .554$
-binomial, $p .555$

The diagram shows that a rectangle with width x and length $2 x+3$ has an area of $2 x^{2}+3 x$. You can also find this product by using the distributive property.

$$
x(2 x+3)=x(2 x)+x(3)=2 x^{2}+3 x
$$

In this lesson, you will learn several methods for
 multiplying polynomials. Each method is based on the distributive property.

EXAMPLE 1 Multiply a monomial and a polynomial

REVIEW

PROPERTIES OF
EXPONENTS
For help with using the properties of exponents, see p. 489.

Find the product $2 x^{3}\left(x^{3}+3 x^{2}-2 x+5\right)$.

$$
\begin{array}{rlrl}
2 x^{3}\left(x^{3}+3 x^{2}-2 x+5\right) & \text { Write product. } \\
=2 x^{3}\left(x^{3}\right)+2 x^{3}\left(3 x^{2}\right)-2 x^{3}(2 x)+2 x^{3}(5) & \text { Distributive property } \\
=2 x^{6}+6 x^{5}-4 x^{4}+10 x^{3} & & \text { Product of powers property }
\end{array}
$$

EXAMPLE 2 Multiply polynomials using a table

Find the product $(x-4)(3 x+2)$.

Solution

STEP 1 Write subtraction as addition in each polynomial.

$$
(x-4)(3 x+2)=[x+(-4)](3 x+2)
$$

STEP 2 Make a table of products.

$3 x$	2	
x	$3 x^{2}$	$2 x$
-4	$-12 x$	-8

- The product is $3 x^{2}+2 x-12 x-8$, or $3 x^{2}-10 x-8$.

Guided Practice for Examples 1 and 2

Find the product.

1. $x\left(7 x^{2}+4\right)$
2. $(a+3)(2 a+1)$
3. $(4 n-1)(n+5)$
