1

EXAMPLES

1, 3, and 4

on p. 35-37

for Exs. 35-38

1.6 Represent Functions as Rules and Tables

рр. 35-40

EXAMPLE

The domain of the function y = 3x - 5 is 2, 3, 4, and 5. Make a table for the function, then identify the range of the function.

X	2	3	4	5
y = 3x - 5	3(2) - 5 = 1	3(3) - 5 = 4	3(4) - 5 = 7	3(5) - 5 = 10

The range of the function is 1, 4, 7, and 10.

EXERCISES

Make a table for the function. Identify the range of the function.

35.
$$y = x - 5$$

Domain: 10, 12, 15, 20, 21

36.
$$y = 3x + 1$$

Domain: 0, 2, 3, 5, 10

Write a rule for the function.

Input, x	0	3	4	6
Output, y	0	15	20	30

1.7 Represent Functions as Graphs

рр. 43–48

EXAMPLE

Write a rule for the function represented by the graph. Identify the domain and the range of the function.

Make a table for the graph.

X	2	3	4	5	6
y	0	1	2	3	4

Each *y*-value is 2 less than the corresponding *x*-value. A rule for the function is y = x - 2. The domain is 2, 3, 4, 5, and 6. The range is 0, 1, 2, 3, and 4.

EXERCISES

39. Graph the function y = 4x - 3 with domain 1, 2, 3, 4, and 5.

40. Write a rule for the function represented by the graph. Identify the domain and the range of the function.

EXAMPLES 1, 3, and 4

on pp. 43–45 for Exs. 39–40