BINOMIALS AND TRINOMIALS A polynomial with two terms is called a **binomial**. A polynomial with three terms is called a **trinomial**.

EXAMPLE 2 Identify and classify polynomials

Tell whether the expression is a polynomial. If it is a polynomial, find its degree and classify it by the number of its terms. Otherwise, tell why it is not a polynomial.

	Expression	Is it a polynomial?	Classify by degree and number of terms
a.	9	Yes	0 degree monomial
b.	$2x^2 + x - 5$	Yes	2nd degree trinomial
c.	$6n^4 - 8^n$	No; variable exponent	
d.	n ⁻² – 3	No; negative exponent	
e.	$7bc^{3} + 4b^{4}c$	Yes	5th degree binomial

ADDING POLYNOMIALS To add polynomials, add like terms. You can use a vertical or a horizontal format.

ALIGN TERMS

If a particular power of the variable appears in one polynomial but not the other, leave a space in that column, or write the term with a coefficient of 0.

GUIDED PRACTICE for Examples 1, 2, and 3

- 1. Write $5y 2y^2 + 9$ so that the exponents decrease from left to right. Identify the degree and leading coefficient of the polynomial.
- **2.** Tell whether $y^3 4y + 3$ is a polynomial. If it is a polynomial, find its degree and classify it by the number of its terms. Otherwise, tell why it is not a polynomial.
- **3.** Find the sum $(5x^3 + 4x 2x) + (4x^2 + 3x^3 6)$.